Handbook of Computational Statistics (eBook)

Concepts and Methods
eBook Download: PDF
2012 | 2nd ed. 2012. revised and updated
XII, 1192 Seiten
Springer Berlin (Verlag)
978-3-642-21551-3 (ISBN)

Lese- und Medienproben

Handbook of Computational Statistics -
Systemvoraussetzungen
309,23 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The Handbook of Computational Statistics - Concepts and Methods (second edition) is a revision of the first edition published in 2004, and contains additional comments and updated information on the existing chapters, as well as three new chapters addressing recent work in the field of computational statistics. This new edition is divided into 4 parts in the same way as the first edition. It begins with 'How Computational Statistics became the backbone of modern data science' (Ch.1): an overview of the field of Computational Statistics, how it emerged as a separate discipline, and how its own development mirrored that of hardware and software, including a discussion of current active research. The second part (Chs. 2 - 15) presents several topics in the supporting field of statistical computing. Emphasis is placed on the need for fast and accurate numerical algorithms, and some of the basic methodologies for transformation, database handling, high-dimensional data and graphics treatment are discussed. The third part (Chs. 16 - 33) focuses on statistical methodology. Special attention is given to smoothing, iterative procedures, simulation and visualization of multivariate data. Lastly, a set of selected applications (Chs. 34 - 38) like Bioinformatics, Medical Imaging, Finance, Econometrics and Network Intrusion Detection highlight the usefulness of computational statistics in real-world applications.

James E. Gentle is a Professor of Computational Statistics at George Mason University.  His research interests include Monte Carlo methods and computational finance.  He is an elected member of the ISI and a Fellow of the American Statistical Association.

Wolfgang Karl Härdle is a Professor of Statistics at the Humboldt-Universität zu Berlin and the Director of CASE - the Centre for Applied Statistics and Economics. He teaches quantitative finance and semi-parametric statistical methods. His research focuses on dynamic factor models, multivariate statistics in finance and computational statistics. He is an elected member of the ISI and an advisor to the Guanghua School of Management, Peking University and to National Central University, Taiwan.

Yuichi Mori is a Professor of Statistics and Informatics at Okayama University of Science. His research interests include efficient computing in multivariate methods, dimension reduction and variable selection, and statistics education. He is an elected member of the ISI and served as a council member of the IASC from 2003 to 2007.

James E. Gentle is a Professor of Computational Statistics at George Mason University.  His research interests include Monte Carlo methods and computational finance.  He is an elected member of the ISI and a Fellow of the American Statistical Association. Wolfgang Karl Härdle is a Professor of Statistics at the Humboldt-Universität zu Berlin and the Director of CASE – the Centre for Applied Statistics and Economics. He teaches quantitative finance and semi-parametric statistical methods. His research focuses on dynamic factor models, multivariate statistics in finance and computational statistics. He is an elected member of the ISI and an advisor to the Guanghua School of Management, Peking University and to National Central University, Taiwan.Yuichi Mori is a Professor of Statistics and Informatics at Okayama University of Science. His research interests include efficient computing in multivariate methods, dimension reduction and variable selection, and statistics education. He is an elected member of the ISI and served as a council member of the IASC from 2003 to 2007.

Part I  Computational Statistics.- Part II  Statistical Computing.- Part III  Statistical Methodology.- Part IV  Selected Applications.

Erscheint lt. Verlag 6.7.2012
Reihe/Serie Springer Handbooks of Computational Statistics
Springer Handbooks of Computational Statistics
Zusatzinfo XII, 1192 p. 297 illus., 96 illus. in color.
Verlagsort Berlin
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte Bioinformatics • Computational Statistics • EM algorithm • functional MRI • MCMC • Network Intrusion Detection • Randon Number Generation • Support Vector Machines
ISBN-10 3-642-21551-3 / 3642215513
ISBN-13 978-3-642-21551-3 / 9783642215513
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 25,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich