Keller-Box Method and Its Application

Buch | Hardcover
XI, 401 Seiten
2014
De Gruyter (Verlag)
978-3-11-027137-9 (ISBN)
169,95 inkl. MwSt
The DeGruyter Studies in Mathematical Physics are devoted to the publication of monographs and high-level texts in mathematical physics. They cover topics and methods in fields of current interest, with an emphasis on didactical presentation. The series will enable readers to understand, apply and develop further, with sufficient rigor, mathematical methods to given problems in physics. For this reason, works with a few authors are preferred over edited volumes. The works in this series are aimed at advanced students and researchers in mathematical and theoretical physics. They also can serve as secondary reading for lectures and seminars at advanced levels.
Most of the problems arising in science and engineering are nonlinear. They are inherently difficult to solve. Traditional analytical approximations are valid only for weakly nonlinear problems, and often break down for problems with strong nonlinearity. This book presents the current theoretical developments and applications of the Keller-box method to nonlinear problems. The first half of the book addresses basic concepts to understand the theoretical framework for the method. In the second half of the book, the authors give a number of examples of coupled nonlinear problems that have been solved by means of the Keller-box method. The particular area of focus is on fluid flow problems governed by nonlinear equation.

Kuppalapalle Vajravelu, University of Central Florida, Orlando, USA; Kerehalli V. Prasad, Bangalore University,India.

Chapter 1: Introduction

Part I: Theoretical considerations
Chapter 2: Principles of Implicit Keller-Box Method
Chapter 3: Stability and convergence of Implicit Keller-Box method

Part II: Application to physical problems
Chapter 4: Application of Keller-Box method to fluid flow and heat transfer problems
Chapter 5: Application of Keller-Box method to coupled nonlinear boundary value problems
Chapter 6: Application of Keller-Box method to more advanced problems

Subject Index
Author Index

"The book is a very nice exposition of an important set of results and applications. It is exceptionally well organized and one can learn many useful techniques based on finite difference methods to approximate the solutions in a broad spectrum of problems. The book is a nice choice for part of a graduate numerical course coordinated with a course on linear partial differential equations. At the same time, the book provides a suitable framework for researchers in the area." Mathematical Reviews

"In the reviewer's opinion, this book provides a fundamental and comprehensive presentation of mathematical principles of the Keller-box method and its applications to numerical solutions of problems of practical interest. The references included in this book are very important, especially for young researchers who wish to deal with numerical methods for fluid dynamics and heat transfer. Moreover, Chapter 6 provides a solid background for future research in the newer field of nanofluids. The book is very well written and readable. Results of the numerical solutions of the considered problems are given graphically and in tabular form. The book will be of interest to a wide range of specialists working in different areas of fluid mechanics and heat transfer, such as graduate, MSc and PhD students, engineers, physicists, chemical engineers, and also to researchers interested in the mathematical theory of fluid mechanics and in connected topics." Zentralblatt für Mathematik

Erscheint lt. Verlag 26.5.2014
Reihe/Serie De Gruyter Studies in Mathematical Physics ; 8
Co-Autor Higher Education Press
Zusatzinfo 40 b/w ill.
Verlagsort Berlin/Boston
Sprache englisch
Maße 170 x 240 mm
Gewicht 832 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Naturwissenschaften Physik / Astronomie Theoretische Physik
Schlagworte Computational fluid mechanics • Computational Fluid Mechanics; Differential Equation; Keller-Box Method; Nonlinear Problem; Numerical Method • differential equation • Differential Equations • Keller-Box Method • Nonlinear Problem • Nonlinear problems • numerical method
ISBN-10 3-11-027137-0 / 3110271370
ISBN-13 978-3-11-027137-9 / 9783110271379
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch (2022)
Springer Spektrum (Verlag)
79,99