3D Surface Reconstruction

Multi-Scale Hierarchical Approaches
Buch | Hardcover
162 Seiten
2012 | 2013 ed.
Springer-Verlag New York Inc.
978-1-4614-5631-5 (ISBN)

Lese- und Medienproben

3D Surface Reconstruction - Francesco Bellocchio, N. Alberto Borghese, Stefano Ferrari, Vincenzo Piuri
106,99 inkl. MwSt
3D Surface Reconstruction: Multi-Scale Hierarchical Approaches presents methods to model 3D objects in an incremental way so as to capture more finer details at each step.

Innovative approaches, based on two popular machine learning paradigms, namely Radial Basis Functions and the Support Vector Machines, are also introduced.
3D Surface Reconstruction: Multi-Scale Hierarchical Approaches presents methods to model 3D objects in an incremental way so as to capture more finer details at each step. The configuration of the model parameters, the rationale and solutions are described and discussed in detail so the reader has a strong understanding of the methodology. Modeling starts from data captured by 3D digitizers and makes the process even more clear and engaging.

Innovative approaches, based on two popular machine learning paradigms, namely Radial Basis Functions and the Support Vector Machines, are also introduced. These paradigms are innovatively extended to a multi-scale incremental structure, based on a hierarchical scheme. The resulting approaches allow readers to achieve high accuracy with limited computational complexity, and makes the approaches appropriate for online, real-time operation. Applications can be found in any domain in which regression is required.

3D Surface Reconstruction: Multi-Scale Hierarchical Approaches is designed as a secondary text book or reference for advanced-level students and researchers in computer science. This book also targets practitioners working in computer vision or machine learning related fields.

Introduction.- Scanner systems.- Reconstruction.- Surface fitting as a regression problem.- Hierarchical Radial Basis Functions Networks.- Hierarchical Support Vector Regression.- Conclusion.

Erscheint lt. Verlag 29.10.2012
Zusatzinfo VI, 162 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Datenbanken
Informatik Grafik / Design Digitale Bildverarbeitung
Mathematik / Informatik Informatik Netzwerke
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte 3D modeling • 3D scanner • hierarchical models • Kernel functions • Multi-scale manifold approximation • Online Learning • Radial Basis Function Networks • Real-time parameters estimate • Regression • Support Vector Machines • support vector regression • surface reconstruction
ISBN-10 1-4614-5631-2 / 1461456312
ISBN-13 978-1-4614-5631-5 / 9781461456315
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Modelle für 3D-Druck und CNC entwerfen

von Lydia Sloan Cline

Buch | Softcover (2022)
dpunkt (Verlag)
34,90
Einstieg und Praxis

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2023)
Markt + Technik (Verlag)
19,95
alles zum Drucken, Scannen, Modellieren

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2024)
Markt + Technik Verlag
24,95