Large Sample Techniques for Statistics - Jiming Jiang

Large Sample Techniques for Statistics

(Autor)

Buch | Softcover
610 Seiten
2012
Springer-Verlag New York Inc.
978-1-4614-2623-3 (ISBN)
90,94 inkl. MwSt
It is well known that, in the 2 “standard” situation, the asymptotic null distribution of the LRT is?,with the degreesoffreedomequaltothe di?erencebetweenthedimensions,de?ned as the numbers of free parameters, of the two nested models being compared (e.g., Rice 1995, pp. -test—the asymptotic distri- 2 2 bution of Pearson’s?
In a way, the world is made up of approximations, and surely there is no exception in the world of statistics. In fact, approximations, especially large sample approximations, are very important parts of both theoretical and - plied statistics.TheGaussiandistribution,alsoknownasthe normaldistri- tion,is merelyonesuchexample,dueto thewell-knowncentrallimittheorem. Large-sample techniques provide solutions to many practical problems; they simplify our solutions to di?cult, sometimes intractable problems; they j- tify our solutions; and they guide us to directions of improvements. On the other hand, just because large-sample approximations are used everywhere, and every day, it does not guarantee that they are used properly, and, when the techniques are misused, there may be serious consequences. 2 Example 1 (Asymptotic? distribution). Likelihood ratio test (LRT) is one of the fundamental techniques in statistics. It is well known that, in the 2 “standard” situation, the asymptotic null distribution of the LRT is?,with the degreesoffreedomequaltothe di?erencebetweenthedimensions,de?ned as the numbers of free parameters, of the two nested models being compared (e.g., Rice 1995, pp. 310). This might lead to a wrong impression that the 2 asymptotic (null) distribution of the LRT is always? . A similar mistake 2 might take place when dealing with Pearson’s? -test—the asymptotic distri- 2 2 bution of Pearson’s? -test is not always? (e.g., Moore 1978).

Jiming Jiang is a Professor of Statistics at the University of California, Davis. He is a Fellow of the American Statistical Association and a Fellow of the Institute of Mathematical Statistics. He is the author of another Springer book, Linear and Generalized Linear Mixed Models and Their Applications (2007). Jiming Jiang is a prominent researcher in the fields of mixed effects models, small area estimation and model selection. Most of his research papers have involved large sample techniques. He is currently an Associate Editor of the Annals of Statistics.

The ?-? Arguments.- Modes of Convergence.- Big O, Small o, and the Unspecified c.- Asymptotic Expansions.- Inequalities.- Sums of Independent Random Variables.- Empirical Processes.- Martingales.- Time and Spatial Series.- Stochastic Processes.- Nonparametric Statistics.- Mixed Effects Models.- Small-Area Estimation.- Jackknife and Bootstrap.- Markov-Chain Monte Carlo.

Reihe/Serie Springer Texts in Statistics
Zusatzinfo XVIII, 610 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
ISBN-10 1-4614-2623-5 / 1461426235
ISBN-13 978-1-4614-2623-3 / 9781461426233
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Der Weg zur Datenanalyse

von Ludwig Fahrmeir; Christian Heumann; Rita Künstler …

Buch | Softcover (2024)
Springer Spektrum (Verlag)
49,99
Eine Einführung für Wirtschafts- und Sozialwissenschaftler

von Günter Bamberg; Franz Baur; Michael Krapp

Buch | Softcover (2022)
De Gruyter Oldenbourg (Verlag)
29,95