Introductory Combinatorics - Kenneth P. Bogart

Introductory Combinatorics

Buch | Hardcover
654 Seiten
2000 | 3rd Revised edition
Brooks/Cole (Verlag)
978-0-12-110830-4 (ISBN)
74,80 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
Focusing on the core material of value to students in a wide variety of fields, this book presents a comprehensive survey of modern combinatorics at an introductory level. It begins with an introduction of concepts fundamental to all branches of combinatorics in the context of combinatorial enumeration.
Focusing on the core material of value to students in a wide variety of fields, this book presents a broad comprehensive survey of modern combinatorics at an introductory level. The author begins with an introduction of concepts fundamental to all branches of combinatorics in the context of combinatorial enumeration. Chapter 2 is devoted to enumeration problems that involve counting the number of equivalence classes of an equivalence relation. Chapter 3 discusses somewhat less direct methods of enumeration, the principle of inclusion and exclusion and generating functions. The remainder of the book is devoted to a study of combinatorial structures.

1. AN INTRODUCTION TO ENUMERATION. Elementary Counting Principles. Functions and the Pigeonhole Principle. Subsets. Using Binomial Coefficients. Mathematical Induction. 2. EQUIVALENCE, RELATIONS, PARTITIONS, AND MULTISETS. Equivalence Relations. Distributions and Multisets. Partitions and Stirling Numbers. Partitions of Integers. 3. ALGEBRAIC COUNTING TECHNIQUES. The Principle of Inclusion and Exclusion. The Concept of a Generating Function. Applications to Partitions and Inclusion--Exclusion. Recurrence Relations and Generating Functions. Exponential Generating Functions. 4. GRAPH THEORY. Eulerian Walks and the Idea of Graphs. Trees. Shortest Paths and Search Trees. Isomorphism and Planarity. Digraphs. Coloring. Graphs and Matrices. 5. MATCHING AND OPTIMIZATION. Matching Theory. The Greedy Algorithm. Network Flows. Flows, Connectivity, and Matching. 6. COMBINATORIAL DESIGNS. Latin Squares and Graeco-Latin Squares. Block Designs. Construction and Resolvability of Designs. Affine and Projective Planes. Codes and Designs. 7. ORDERED SETS. Partial Orderings. Linear Extensions and Chains. Lattices. Boolean Algebras. Mobius Functions. Products of Orderings. 8. ENUMERATION UNDER GROUP ACTION. Permutation Groups. Groups Acting on Sets. Polya's Enumeration Theorem.

Erscheint lt. Verlag 9.2.2000
Verlagsort CA
Sprache englisch
Maße 159 x 237 mm
Gewicht 1012 g
Themenwelt Mathematik / Informatik Mathematik Graphentheorie
ISBN-10 0-12-110830-9 / 0121108309
ISBN-13 978-0-12-110830-4 / 9780121108304
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Numbers and Counting, Groups, Graphs, Orders and Lattices

von Volker Diekert; Manfred Kufleitner; Gerhard Rosenberger …

Buch | Softcover (2023)
De Gruyter (Verlag)
64,95