Introduction to Cryptography - Johannes Buchmann

Introduction to Cryptography

Buch | Softcover
281 Seiten
2012 | Softcover reprint of the original 1st ed. 2001
Springer-Verlag New York Inc.
978-1-4684-0498-2 (ISBN)
53,49 inkl. MwSt
Cryptography is a key technology in electronic security systems. Modern cryptograpic techniques have many uses, such as to digitally sign documents, for access control, to implement electronic money, and for copyright protection. Because of these important uses it is necessary that users be able to estimate the efficiency and security of cryptographic techniques. It is not sufficient for them to know only how the techniques work. This book is written for readers who want to learn about mod- ern cryptographic algorithms and their mathematical foundation but who do not have the necessary mathematical background. It is my goal to explain the basic techniques of modern cryptography, including the necessary mathematical results from linear algebra, algebra, number theory, and probability theory. I assume only basic mathematical knowledge. The book is based on courses in cryptography that I have been teaching at the Technical University, Darmstadt, since 1996. I thank all students who attended the courses and who read the manuscript carefully for their interest and support.
In particular, I would like to thank Harald Baier, Gabi Barking, Manuel Breuning, Sa- fuat Hamdy, Birgit Henhapl, Michael Jacobson (who also corrected my English), Andreas Kottig, Markus Maurer, Andreas Meyer, Stefan v vi Preface Neis, Sachar Paulus, Thomas Pfahler, Marita Skrobic, Edlyn Thske, Patrick Theobald, and Ralf-Philipp Weinmann. I also thank the staff at Springer-Verlag, in particular Martin Peters, Agnes Herrmann, Claudia Kehl, Ina Lindemann, and Thrry Kornak, for their support in the preparation of this book.

1 Integers.- 1.1 Basics.- 1.2 Divisibility.- 1.3 Representation of Integers.- 1.4 O- and ?-Notation.- 1.5 Cost of Addition, Multiplication, and Division with Remainder.- 1.6 Polynomial Time.- 1.7 Greatest Common Divisor.- 1.8 Euclidean Algorithm.- 1.9 Extended Euclidean Algorithm.- 1.10 Analysis of the Extended Euclidean Algorithm.- 1.11 Factoring into Primes.- 1.12 Exercises.- 2 Congruences and Residue Class Rings.- 2.1 Congruences.- 2.2 Semigroups.- 2.3 Groups.- 2.4 Residue Class Rings.- 2.5 Fields.- 2.6 Division in the Residue Class Ring.- 2.7 Analysis of Operations in the Residue Class Ring.- 2.8 Multiplicative Group of Residues.- 2.9 Order of Group Elements.- 2.10 Subgroups.- 2.11 Fermat’s Little Theorem.- 2.12 Fast Exponentiation.- 2.13 Fast Evaluation of Power Products.- 2.14 Computation of Element Orders.- 2.15 The Chinese Remainder Theorem.- 2.16 Decomposition of the Residue Class Ring.- 2.17 A Formula for the Euler ?-Function.- 2.18 Polynomials.- 2.19 Polynomials over Fields.- 2.20 Structure of the Unit Group of Finite Fields.- 2.21 Structure of the Multiplicative Group of Residues mod a Prime Number.- 2.22 Exercises.- 3 Encryption.- 3.1 Encryption Schemes.- 3.2 Symmetric and Asymmetric Cryptosystems.- 3.3 Cryptanalysis.- 3.4 Alphabets and Words.- 3.5 Permutations.- 3.6 Block Ciphers.- 3.7 Multiple Encryption.- 3.8 Use of Block Ciphers.- 3.9 Stream Ciphers.- 3.10 Affine Cipher.- 3.11 Matrices and Linear Maps.- 3.12 Affine Linear Block Ciphers.- 3.13 Vigenère, Hill, and Permutation Ciphers.- 3.14 Cryptanalysis of Affine Linear Block Ciphers.- 3.15 Exercises.- 4 Probability and Perfect Secrecy.- 4.1 Probability.- 4.2 Conditional Probability.- 4.3 Birthday Paradox.- 4.4 Perfect Secrecy.- 4.5 Vernam One-Time Pad.- 4.6 Random Numbers.- 4.7 PseudorandomNumbers.- 4.8 Exercises.- 5 DES.- 5.1 Feistel Ciphers.- 5.2 DES Algorithm.- 5.3 An Example.- 5.4 Security of DES.- 5.5 Exercises.- 6 Prime Number Generation.- 6.1 Trial Division.- 6.2 Fermat Test.- 6.3 Carmichael Numbers.- 6.4 Miller-Rabin Test.- 6.5 Random Primes.- 6.6 Exercises.- 7 Public-Key Encryption.- 7.1 Idea.- 7.2 RSA Cryptosystem.- 7.3 Rabin Encryption.- 7.4 Diffie-Hellman Key Exchange.- 7.5 ElGamal Encryption.- 7.6 Exercises.- 8 Factoring.- 8.1 Trial Division.- 8.2 p — 1 Method.- 8.3 Quadratic Sieve.- 8.4 Analysis of the Quadratic Sieve.- 8.5 Efficiency of Other Factoring Algorithms.- 8.6 Exercises.- 9 Discrete Logarithms.- 9.1 DL Problem.- 9.2 Enumeration.- 9.3 Shanks Baby-Step Giant-Step Algorithm.- 9.4 Pollard ?-Algorithm.- 9.5 Pohlig-Hellman Algorithm.- 9.6 Index Calculus.- 9.7 Other Algorithms.- 9.8 Generalization of the Index Calculus Algorithm.- 9.9 Exercises.- 10 Cryptographic Hash Functions.- 10.1 Hash Functions and Compression Functions.- 10.2 Birthday Attack.- 10.3 Compression Functions from Encryption Functions.- 10.4 Hash Functions from Compression Functions.- 10.5 Efficient Hash Functions.- 10.6 An Arithmetic Compression Function.- 10.7 Message Authentication Codes.- 10.8 Exercises.- 11 Digital Signatures.- 11.1 Idea.- 11.2 RSA Signatures.- 11.3 Signatures from Public-Key Systems.- 11.4 ElGamal Signature.- 11.5 Digital Signature Algorithm (DSA).- 11.6 Exercises.- 12 Other Groups.- 12.1 Finite Fields.- 12.2 Elliptic Curves.- 12.3 Quadratic Forms.- 12.4 Exercises.- 13 Identification.- 13.1 Passwords.- 13.2 One-Time Passwords.- 13.3 Challenge-Response Identification.- 13.4 Exercises.- 14 Public-Key Infrastructures.- 14.1 Personal Security Environments.- 14.2 Certification Authorities.- 14.3 Certificate Chains.- References.- Solutions to theExercises.

Reihe/Serie Undergraduate Texts in Mathematics
Zusatzinfo XI, 281 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Kryptologie
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
ISBN-10 1-4684-0498-9 / 1468404989
ISBN-13 978-1-4684-0498-2 / 9781468404982
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
29,99