Arithmetic Functions and Integer Products - P.D.T.A. Elliott

Arithmetic Functions and Integer Products

Buch | Softcover
461 Seiten
2011 | Softcover reprint of the original 1st ed. 1985
Springer-Verlag New York Inc.
978-1-4613-8550-9 (ISBN)
53,49 inkl. MwSt
Every positive integer m has a product representation of the form where v, k and the ni are positive integers, and each Ei = ± I. A value can be given for v which is uniform in the m. A representation can be computed so that no ni exceeds a certain fixed power of 2m, and the number k of terms needed does not exceed a fixed power of log 2m. Consider next the collection of finite probability spaces whose associated measures assume only rational values. Let hex) be a real-valued function which measures the information in an event, depending only upon the probability x with which that event occurs. Assuming hex) to be non­ negative, and to satisfy certain standard properties, it must have the form -A(x log x + (I - x) 10g(I -x». Except for a renormalization this is the well-known function of Shannon. What do these results have in common? They both apply the theory of arithmetic functions. The two widest classes of arithmetic functions are the real-valued additive and the complex-valued multiplicative functions. Beginning in the thirties of this century, the work of Erdos, Kac, Kubilius, Turan and others gave a discipline to the study of the general value distribution of arithmetic func­ tions by the introduction of ideas, methods and results from the theory of Probability. I gave an account of the resulting extensive and still developing branch of Number Theory in volumes 239/240 of this series, under the title Probabilistic Number Theory.

Duality and the Differences of Additive Functions.- First Motive.- 1 Variants of Well-Known Arithmetic Inequalities.- 2 A Diophantine Equation.- 3 A First Upper Bound.- 4 Intermezzo: The Group Q*/?.- 5 Some Duality.- Second Motive.- 6 Lemmas Involving Prime Numbers.- 7 Additive Functions on Arithmetic Progressions with Large Moduli.- 8 The Loop.- Third Motive.- 9 The Approximate Functional Equation.- 10 Additive Arithmetic Functions on Differences.- 11 Some Historical Remarks.- 12 From L2 to L?.- 13 A Problem of Kátai.- 14 Inequalities in L?.- 15 Integers as Products.- 16 The Second Intermezzo.- 17 Product Representations by Values of Rational Functions.- 18 Simultaneous Product Representations by Values of Rational Functions.- 19 Simultaneous Product Representations with aix + bi.- 20 Information and Arithmetic.- 21 Central Limit Theorem for Differences.- 22 Density Theorems.- 23 Problems.- Supplement Progress in Probabilistic Number Theory.- References.

Reihe/Serie Grundlehren der mathematischen Wissenschaften ; 272
Zusatzinfo 461 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte arithmetic • Functions
ISBN-10 1-4613-8550-4 / 1461385504
ISBN-13 978-1-4613-8550-9 / 9781461385509
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Sieben ausgewählte Themenstellungen

von Hartmut Menzer; Ingo Althöfer

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
64,95
unlock your imagination with the narrative of numbers

von Dave Kester; Mikaela Ashcroft

Buch | Softcover (2024)
Advantage Media Group (Verlag)
19,90
Seltsame Mathematik - Enigmatische Zahlen - Zahlenzauber

von Klaus Scharff

Buch | Softcover (2024)
BoD – Books on Demand (Verlag)
20,00