Series in Banach Spaces
Springer Basel (Verlag)
978-3-0348-9942-0 (ISBN)
Notations.- 1. Background Material.-
1. Numerical Series. Riemann's Theorem.-
2. Main Definitions. Elementary Properties of Vector Series.-
3. Preliminary Material on Rearrangements of Series of Elements of a Banach Space.- 2. Series in a Finite-Dimensional Space.-
1. Steinitz's Theorem on the Sum Range of a Series.-
2. The Dvoretzky-Hanani Theorem on Perfectly Divergent Series.-
3. Pecherskii's Theorem.- 3. Conditional Convergence in an Infinite-Dimensional Space.-
1. Basic Counterexamples.-
2. A Series Whose Sum Range Consists of Two Points.-
3. Chobanyan's Theorem.-
4. The Khinchin Inequalities and the Theorem of M. I. Kadets on Conditionally Convergent Series in Lp.- 4. Unconditionally Convergent Series.-
1. The Dvoretzky-Rogers Theorem.-
2. Orlicz's Theorem on Unconditionally Convergent Series in LpSpaces.-
3. Absolutely Summing Operators. Grothendieck's Theorem.- 5. Orlicz's Theorem and the Structure of Finite-Dimensional Subspaces.-
1. Finite Representability.-
2.The space c0, C-Convexity, and Orlicz's Theorem.-
3. Survey on Results on Type and Cotype.- 6. Some Results from the General Theory of Banach Spaces.-
1. Fréchet Differentiability of Convex Functions.-
2. Dvoretzky's Theorem.-
3. Basic Sequences.-
4. Some Applications to Conditionally Convergent Series.- 7. Steinitz's Theorem and B-Convexity.-
1. Conditionally Convergent Series in Spaces with Infratype.-
2. A Technique for Transferring Examples with Nonlinear Sum Range to Arbitrary Infinite-Dimensional Banach Spaces.-
3. Series in Spaces That Are Not B-Convex.- 8. Rearrangements of Series in Topological Vector Spaces.-
1. Weak and Strong Sum Range.-
2. Rearrangements of Series of Functions.-
3. Banaszczyk's Theorem on Series in Metrizable Nuclear Spaces.- Appendix. The Limit Set of the Riemann Integral Sums of a Vector-Valued Function.-
2. The Example of Nakamura and Amemiya.-
4. Connection with the Weak Topology.- Comments to the Exercises.- References.
"The material in the book is always started with motivation. There are plenty of exercises, with hints for solution. The list of references is complete and up-to-day. This is an amazing book on doctoral level, written by experienced authors, who contributed a lot to the subject presented in the book." (J.Musielak, zbMATH, 0876.46009, 1997)
Erscheint lt. Verlag | 11.11.2011 |
---|---|
Reihe/Serie | Operator Theory: Advances and Applications |
Zusatzinfo | VIII, 159 p. |
Verlagsort | Basel |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 270 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Schlagworte | Calculus • Finite • Function • Functional Analysis • metrizable • Proof • Theorem • Topology |
ISBN-10 | 3-0348-9942-4 / 3034899424 |
ISBN-13 | 978-3-0348-9942-0 / 9783034899420 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich