Number Theory -  W.A. Coppel

Number Theory (eBook)

An Introduction to Mathematics: Part A

(Autor)

eBook Download: PDF
2006 | 1. Auflage
384 Seiten
Springer US (Verlag)
978-0-387-29852-8 (ISBN)
47,59 € inkl. MwSt
Systemvoraussetzungen
43,68 € inkl. MwSt
Systemvoraussetzungen
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Undergraduate courses in mathematics are commonly of two types. On the one hand are courses in subjects - such as linear algebra or real analysis - with which it is considered that every student of mathematics should be acquainted. On the other hand are courses given by lecturers in their own areas of specialization, which are intended to serve as a preparation for research. But after taking courses of only these two types, students might not perceive the sometimes surprising interrelationships and analogies between different branches of mathematics, and students who do not go on to become professional mathematicians might never gain a clear understanding of the nature and extent of mathematics. The two-volume Number Theory: An Introduction to Mathematics attempts to provide such an understanding of the nature and extent of mathematics. It is a modern introduction to the theory of numbers, emphasizing its connections with other branches of mathematics. Part A, which should be accessible to a first-year undergraduate, deals with elementary number theory. Part B is more advanced than the first and should give the reader some idea of the scope of mathematics today. The connecting theme is the theory of numbers. By exploring its many connections with other branches, we may obtain a broad picture.
Undergraduate courses in mathematics are colnmonly of two types. On the one hand there are courses in subjects, such as linear algebra or real analysis, with which it is considered that every student of mathematics should be acquainted. On the other hand there are courses given by lecturers in their own areas of specialization, which are intended to sellre as a prepasation for research. There ase, I believe, several reasons why students need more than this. Fhst, although the vast extent of mathematics today makes it impossible for any indvidual to have a deep knowledge of more than a small part, it is important to have some understanding and appreciation of the work of others. Indeed the sometimes su~prising intei-relationships and analogies between different branches of mathematics are both the basis for many of its applications and the stimulus for further development. Secondly, different branches of mathematics appeal in different ways and require different talents. It is unlikely that all students at one university will have the same interests and aptitudes as their lecturers. Rather, they will only discover what their own interests and aptitudes are by being exposed to a broader range. Thirdly, many students of lnathematics will become, not professional mathematicians, but scientists, engineers or schoolteachers. It is useful for them to have a clear understanding of the nature and extent of mathematics, and it is in the interests of mathematicians that there should be a body of people in the coinmunity who have this understanding.
Erscheint lt. Verlag 12.6.2006
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Technik
ISBN-10 0-387-29852-5 / 0387298525
ISBN-13 978-0-387-29852-8 / 9780387298528
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 16,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich