Geometric Optimal Control (eBook)

Theory, Methods and Examples
eBook Download: PDF
2012 | 2012
XX, 640 Seiten
Springer New York (Verlag)
978-1-4614-3834-2 (ISBN)

Lese- und Medienproben

Geometric Optimal Control - Heinz Schättler, Urszula Ledzewicz
Systemvoraussetzungen
71,39 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Here is a comprehensive review of the fundamental conditions for optimality for finite-dimensional, deterministic, optimal control problems. Includes worked examples ranging from minimum surfaces of revolution to cancer treatment for novel therapy approaches.
This book gives a comprehensive treatment of the fundamental necessary and sufficient conditions for optimality for finite-dimensional, deterministic, optimal control problems. The emphasis is on the geometric aspects of the theory and on illustrating how these methods can be used to solve optimal control problems. It provides tools and techniques that go well beyond standard procedures and can be used to obtain a full understanding of the global structure of solutions for the underlying problem. The text includes a large number and variety of fully worked out examples that range from the classical problem of minimum surfaces of revolution to cancer treatment for novel therapy approaches. All these examples, in one way or the other, illustrate the power of geometric techniques and methods. The versatile text contains material on different levels ranging from the introductory and elementary to the advanced. Parts of the text can be viewed as a comprehensive textbook for both advanced undergraduate and all level graduate courses on optimal control in both mathematics and engineering departments. The text moves smoothly from the more introductory topics to those parts that are in a monograph style were advanced topics are presented. While the presentation is mathematically rigorous, it is carried out in a tutorial style that makes the text accessible to a wide audience of researchers and students from various fields, including the mathematical sciences and engineering.
Heinz Schättler is an Associate Professor at Washington University in St. Louis in the Department of Electrical and Systems Engineering, Urszula Ledzewicz is a Distinguished Research Professor at Southern Illinois University Edwardsville in the Department of Mathematics and Statistics.

Urszula Ledzewicz is a Distinguished Research Professor in the Department of Mathematics and Statistics at Southern Illinois University. Heinz Schaettler is an Associate Professor at Washington University.

The Calculus of Variations: A Historical Perspective.- The Pontryagin Maximum Principle: From Necessary Conditions to the Construction of an Optimal Solution.- Reachable Sets of Linear Time-Invariant Systems: From Convex Sets to the Bang-Bang Theorem.- The High-Order Maximum Principle: From Approximations of Reachable Sets to High-Order Necessary Conditions for Optimality.- The Method of Characteristics: A Geometric Approach to Sufficient Conditions for a Local Minimum.- Synthesis of Optimal Controlled Trajectories: FromLocal to Global Solutions.- Control-Affine Systems in Low Dimensions: From Small-Time Reachable Sets to Time-Optimal Syntheses.- References.- Index.

Erscheint lt. Verlag 26.6.2012
Reihe/Serie Interdisciplinary Applied Mathematics
Verlagsort New York
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Geometrie / Topologie
Technik
Schlagworte Calculus of Variations • geometric optimal control • Lie bracket computations • Pontryagin Maximum Principle • reachable sets
ISBN-10 1-4614-3834-9 / 1461438349
ISBN-13 978-1-4614-3834-2 / 9781461438342
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich