Prüfungstrainer Lineare Algebra (eBook)
VIII, 246 Seiten
Spektrum Akademischer Verlag
978-3-8274-2163-0 (ISBN)
In einem konzisen Frage-Antworten-Stil werden die zentralen Begriffe und Beweise der Linearen Algebra wiederholt. Mehr noch als auf die Rechenfähigkeit (die sicherlich auch notwendig ist und nicht zu kurz kommt) wird Wert auf das Verständnis wichtiger Konzepte gelegt, deren grundsätzliche Bedeutung durch viele Querverweise auf Anwendungen in anderen Gebieten der Mathematik sowie der Natur- und Computerwissenschaften illustriert wird. Dem Autorenduo – einem Dozenten mit langjähriger Vorlesungs- und Prüfungserfahrung und einem Mathematikabsolventen – ist es sehr gut gelungen, mit der Auswahl der Fragen ein realistisches Bild davon zu vermitteln, was einen Studenten in der mündlichen Prüfung oder einer Klausur typischerweise erwartet.
Durch die Gliederung des Stoffes in einzelne Fragen eignet sich das Buch ausgezeichnet dazu, Wissen stichpunktartig zu trainieren und zu überprüfen; auch höhere Semester können davon profitieren, wenn sie schon einmal Gelerntes noch einmal gezielt nachschlagen wollen. Eine besondere Attraktion stellen die zahlreichen Abbildungen dar, die geometrische Sachverhalte veranschaulichen.
Dr. Rolf Busam ist wissenschaftlicher Mitarbeiter am Mathematischen Institut der Universität Heidelberg, hält dort seit langen Jahren die Analysis-Vorlesungen und ist mitverantwortlich für die Lehrerausbildung. Thomas Epp hat an der HU Berlin Mathematik und Philosophie studiert.
Vorwort.-
1 Algebraische Grundlagen.- 1.1 Der Begriff der Gruppe. 1.2 Abbildungen zwischen Gruppen und Untergruppen. 1.3 Der Signum-Homomorphismus. 1.4 Ringe und Körper. 1.5 Polynomringe.-
2 Vektorräume.- 2.1 Grundbegriffe. 2.2 Basis und Dimension. 2.3 Direkte Summen von Vektorräumen. 2.4 Affine Unterräume.-
3 Lineare Abbildungen und Matrizen.- 3.1 Grundbegriffe. 3.2 Der Dualraum. 3.3 Quotientenvektorräume. 3.4 Matrizen. 3.5 Matrizenringe. 3.6 Koordinatenisomorphismen und Basiswechselformalismus. 3.7 Das Gauß'sche Eleminationsverfahren. 3.8 Lineare Gleichungssysteme.-
4 Determinanten.- 4.1 Alternierende Multilinearformen. 4.2 Determinanten von Matrizen und Endomorphismen-
5 Normalformentheorie.- 5.1 Eigenwerte und Eigenvektoren. 5.2 Das charakteristische Polynom. 5.3 Einsetzen von Matrizen und Endomorphismen in Polynome. 5.4 Die Jordan'sche Normalform.-
6 Euklidische und unitäre Vektorräume.- 6.1 Bilinearformen und Skalarprodukte. 6.2 Normierte Räume. 6.3 Orthonormalbasen und das Orthonormalisierungsverfahren von Gram-Schmidt. 6.4 Lineare Gleichungssysteme revisited. 6.5 Orthogonale und unitäre Endomorphismen. 6.6 Adjungierte Abbildungen. 6.7 Selbstadjungierte Abbildungen.-
7 Anwendungen in der Geometrie. 7.1 Affine Räume und Abbildungen. 7.2 Projektive Räume. 7.3 Projektive Quadriken. 7.4 Affine Quadriken.-
Literatur.-
Symbolverzeichnis.-
Namen- und Sachverzeichnis.-
Erscheint lt. Verlag | 28.11.2008 |
---|---|
Verlagsort | Heidelberg |
Sprache | deutsch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Technik | |
Schlagworte | Algebra • Determinanten • Eigenvektoren • Eigenwert • Koordinaten • lineare Abbildung • Lineare Algebra • Lineare Gleichungssysteme • Matrizen • Skalarprodukt • Unterräume • Vektoren • Vektorräume |
ISBN-10 | 3-8274-2163-2 / 3827421632 |
ISBN-13 | 978-3-8274-2163-0 / 9783827421630 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 1,7 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich