Mathematik

Grundlagen für Wirtschaftswissenschaftler
Buch | Softcover
XII, 412 Seiten
1999 | 2., überarb. Aufl. 2000
Springer Berlin (Verlag)
978-3-540-66521-2 (ISBN)

Lese- und Medienproben

Mathematik - Klaus D. Schmidt
27,99 inkl. MwSt
Mathematische Modelle und Methoden sind in weiten Teilen der Wirtschaftswissenschaften unverzichtbar; dabei dient die Mathematik einerseits als Sprache zur Modellierung komplexer wirtschaftlicher Zusammenhänge, andererseits als Werkzeug zur Analyse wirtschaftswissenschaftlicher Modelle. Dieses Buch behandelt die wichtigsten Aspekte der Linearen Algebra und der Analysis. Schwerpunkte sind lineare Gleichungssysteme, lineare Differenzen- und Differentialgleichungen sowie lineare und nichtlineare Optimierungsprobleme unter Nebenbedingungen. Die dargestellten Konzepte werden anhand zahlreicher Beispiele verdeutlicht.

Mathematische Modelle und Methoden sind in weiten Teilen der Wirtschaftswissenschaften unverzichtbar; dabei dient die Mathematik einerseits als Sprache zur Modellierung komplexer wirtschaftlicher Zusammenhänge, andererseits als Werkzeug zur Analyse wirtschaftswissenschaftlicher Modelle. Dieses Buch behandelt die wichtigsten Aspekte der Linearen Algebra und der Analysis. Schwerpunkte sind lineare Gleichungssysteme, lineare Differenzen- und Differentialgleichungen sowie lineare und nichtlineare Optimierungsprobleme unter Nebenbedingungen. Die dargestellten Konzepte werden anhand zahlreicher Beispiele verdeutlicht.

Prof. Dr. Klaus D. Schmidt ist Inhaber des Lehrstuhls für Versicherungsmathematik an der Technischen Universität Dresden. Er studierte in Kiel und Zürich Mathematik mit Wirtschaftswissenschaften und Informatik und promovierte und habilitierte sich in Mannheim.

Formale Logik.- 1.1 Die Axiome von Peano.- 1.2 Aussagenlogik.- 1.3 Quantoren.- 1.4 Mathematische Schlußweisen.- 2 Mengenlehre.- 2.1 Mengen und ihre Elemente.- 2.2 Mengenalgebra.- 2.3 Relationen.- 2.4 Abbildungen.- 3 Zahlen.- 3.1 Die natürlichen Zahlen.- 3.2 Die reellen Zahlen.- 3.3 Die ganzen Zahlen und die rationalen Zahlen.- 3.4 Die komplexen Zahlen.- 3.5 Algebraische Strukturen.- 4 Vektoren.- 4.1 Vektoralgebra.- 4.2 Vektorräume.- 4.3 Vektorräume mit Norm.- 4.4 Vektorräume mit Skalarprodukt.- 5 Matrizen.- 5.1 Matrixalgebra.- 5.2 Matrizen als lineare Abbildungen.- 5.3 Quadratische Matrizen.- 5.4 Spur und Determinante.- 5.5 Reguläre Matrizen.- 5.6 Spezielle quadratische Matrizen.- 6 Lineare Gleichungssysteme.- 6.1 Das Austauschverfahren.- 6.2 Das Austauschverfahren als Algorithmus.- 6.3 Matrizengleichungen.- 6.4 Bestimmung von Kern und Rang.- 6.5 Bestimmung der Inversen einer regulären Matrix.- 7 Lineare Optimierung.- 7.1 Beispiele für lineare Optimierungsprobleme.- 7.2 Das Minimumproblem in Normalform.- 7.3 Basisdarstellungen und Basislösungen.- 7.4 Das Simplexkriterium.- 7.5 Das Simplexverfahren.- 7.6 Bestimmung einer zulässigen Basislösung.- 7.7 Algorithmische Lösung der Beispiele.- 8 Lineare Differenzengleichungen.- 8.1 Folgen.- 8.2 Lineare Differenzengleichungen 1. Ordnung.- 8.3 Lineare Differenzengleichungen 2. Ordnung.- 8.4 Der Differenzenoperator.- 9 Konvergenz von Folgen, Reihen und Produkten.- 9.1 Konvergenz von Folgen.- 9.2 Konvergenz von Reihen.- 9.3 Konvergenz von Produkten.- 10 Stetige Funktionen in einer Variablen.- 10.1 Stetigkeit.- 10.2 Stetige Funktionen.- 10.3 Spezielle stetige Funktionen.- 11 Differentialrechnung in einer Variablen.- 11.1 Differenzierbarkeit.- 11.2 Einmal differenzierbare Funktionen.- 11.3 Zweimal differenzierbareFunktionen.- 11.4 Ableitungen höherer Ordnung.- 12 Lineare Differentialgleichungen.- 12.1 Das unbestimmte Integral.- 12.2 Lineare Differentialgleichungen 1. Ordnung.- 12.3 Lineare Differentialgleichungen 2. Ordnung.- 12.4 Der Differentialoperator.- 13 Integralrechnung.- 13.1 Das bestimmte Integral.- 13.2 Uneigentliche Integrale.- 14 Differentialrechnung in mehreren Variablen.- 14.1 Konvergenz im Euklidischen Raum.- 14.2 Reelle Funktionen in mehreren Variablen.- 14.3 Stetigkeit.- 14.4 Partielle Differenzierbarkeit.- 14.5 Einmal partiell differenzierbare Funktionen.- 14.6 Zweimal partiell differenzierbare Funktionen.- 14.7 Optimierung unter Nebenbedingungen.- Literatur.- Stichwortverzeichnis.

Erscheint lt. Verlag 12.11.1999
Reihe/Serie Springer-Lehrbuch
Zusatzinfo XII, 412 S.
Verlagsort Berlin
Sprache deutsch
Maße 155 x 235 mm
Gewicht 638 g
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Wirtschaft Allgemeines / Lexika
Wirtschaft Volkswirtschaftslehre
Schlagworte Abbildungen • Ableitungen • Analysis • Determinante • Differentialrechnung • Differenzengleichung • Folgen • Integralrechnung • Lineare Algebra • Lineare Gleichungssysteme • Lineare Optimierung • Lineare und nichtlineare Optimierung • Mathematik für Wirtschaftswissenschaftler • Mathematik; Handbuch/Lehrbuch (Sozial-/Wirtschaftswissen) • Matrizengleichung • Modellierung • Nichtlineare Optimierung • Reihen • Simplexverfahren • Stetigkeit • Vektoren • Wirtschaftsmathematik • Wirtschaftswissenschaftler
ISBN-10 3-540-66521-8 / 3540665218
ISBN-13 978-3-540-66521-2 / 9783540665212
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
69,95