Matrices -  Denis Serre

Matrices (eBook)

Theory and Applications

(Autor)

eBook Download: PDF
2010 | 2. Auflage
289 Seiten
Springer New York (Verlag)
978-1-4419-7683-3 (ISBN)
Systemvoraussetzungen
63,06 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
In this book, Denis Serre begins by providing a clean and concise introduction to the basic theory of matrices. He then goes on to give many interesting applications of matrices to different aspects of mathematics and also other areas of science and engineering. With forty percent new material, this second edition is significantly different from the first edition.

Newly added topics include:
- Dunford decomposition,
- tensor and exterior calculus, polynomial identities,
- regularity of eigenvalues for complex matrices,
- functional calculus and the Dunford-Taylor formula,
- numerical range,
- Weyl's and von Neumann's inequalities, and
- Jacobi method with random choice.

The book mixes together algebra, analysis, complexity theory and numerical analysis. As such, this book will provide many scientists, not just mathematicians, with a useful and reliable reference. It is intended for advanced undergraduate and graduate students with either applied or theoretical goals. This book is based on a course given by the author at the École Normale Supérieure de Lyon.

Denis Serre is Professor of Mathematics at École Normale Supérieure de Lyon and a former member of the Institut Universitaire de France. He is a member of numerous editorial boards and the author of 'Systems of Conservation Laws' (Cambridge University Press 2000). With S. Benzoni-Gavage, he is the co-author of 'Multi-Dimensional Hyperbolic Partial Differential Equations. First Order Systems and Applications' (Oxford University Press 2007). With S. Friedlander, he has co-edited four volumes of a 'Handbook of Mathematical Fluid Dynamics' (Elsevier 2002--2007). The first edition of the present book is a translation of the original French edition, 'Les Matrices: Théorie et Pratique', published by Dunod (2001).
In this book, Denis Serre begins by providing a clean and concise introduction to the basic theory of matrices. He then goes on to give many interesting applications of matrices to different aspects of mathematics and also other areas of science and engineering. With forty percent new material, this second edition is significantly different from the first edition. Newly added topics include: * Dunford decomposition, * tensor and exterior calculus, polynomial identities, * regularity of eigenvalues for complex matrices, * functional calculus and the Dunford-Taylor formula, * numerical range, * Weyl's and von Neumann's inequalities, and * Jacobi method with random choice. The book mixes together algebra, analysis, complexity theory and numerical analysis. As such, this book will provide many scientists, not just mathematicians, with a useful and reliable reference. It is intended for advanced undergraduate and graduate students with either applied or theoretical goals. This book is based on a course given by the author at the Ecole Normale Superieure de Lyon.
Erscheint lt. Verlag 3.11.2010
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
Technik
ISBN-10 1-4419-7683-3 / 1441976833
ISBN-13 978-1-4419-7683-3 / 9781441976833
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 1,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich