Progress in Commutative Algebra 2 (eBook)
325 Seiten
Walter de Gruyter GmbH & Co.KG (Verlag)
978-3-11-027860-6 (ISBN)
This is the second of two volumes of a state-of-the-art survey article collection which emanates from three commutative algebra sessions atthe 2009 Fall Southeastern American Mathematical Society Meeting at Florida Atlantic University. The articles reach into diverse areas of commutative algebra and build a bridge between Noetherian and non-Noetherian commutative algebra. The current trends in two of the most active areas of commutative algebra are presented: non-noetherian rings (factorization, ideal theory, integrality), advances from the homological study of noetherian rings (the local theory, graded situation and its interactions with combinatorics and geometry).
This second volume discusses closures, decompositions, and factorization.
Christopher Francisco, Oklahoma State University, Stillwater, Oklahoma, USA; Lee C. Klingler, Florida Atlantic University, Boca Raton, Florida, USA; Sean M. Sather-Wagstaff, North Dakota State University, Fargo, North Dakota, USA; Janet Vassilev, University of New Mexico, Albuquerque, New Mexico, USA.
Preface 6
A Guide to Closure Operations in Commutative Algebra 12
1 Introduction 12
2 What Is a Closure Operation? 13
2.1 The Basics 13
2.2 Not-quite-closure Operations 17
3 Constructing Closure Operations 18
3.1 Standard Constructions 18
3.2 Common Closures as Iterations of Standard Constructions 20
4 Properties of Closures 21
4.1 Star-, Semi-prime, and Prime Operations 21
4.2 Closures Defined by Properties of (Generic) Forcing Algebras 27
4.3 Persistence 28
4.4 Axioms Related to the Homological Conjectures 29
4.5 Tight Closure and Its Imitators 31
4.6 (Homogeneous) Equational Closures and Localization 32
5 Reductions, Special Parts of Closures, Spreads, and Cores 33
5.1 Nakayama Closures and Reductions 33
5.2 Special Parts of Closures 34
6 Classes of Rings Defined by Closed Ideals 36
6.1 When Is the Zero Ideal Closed? 37
6.2 When Are 0 and Principal Ideals Generated by Non-zerodivisors Closed? 37
6.3 When Are Parameter Ideals Closed (Where R Is Local)? 38
6.4 When Is Every Ideal Closed? 39
7 Closure Operations on (Sub)modules 40
7.1 Torsion Theories 42
A Survey of Test Ideals 50
1 Introduction 50
2 Characteristic p Preliminaries 52
2.1 The Frobenius Endomorphism 52
2.2 F-purity 53
3 The Test Ideal 55
3.1 Test Ideals of Map-pairs 55
3.2 Test Ideals of Rings 58
3.3 Test Ideals in Gorenstein Local Rings 59
4 Connections with Algebraic Geometry 61
4.1 Characteristic 0 Preliminaries 61
4.2 Reduction to Characteristic p > 0 and Multiplier Ideals
4.3 Multiplier Ideals of Pairs 65
4.4 Multiplier Ideals vs. Test Ideals of Divisor Pairs 67
5 Tight Closure and Applications of Test Ideals 68
5.1 The Briançon-Skoda Theorem 72
5.2 Tight Closure for Modules and Test Elements 72
6 Test Ideals for Pairs (R, at) and Applications 74
6.1 Initial Definitions of at -test Ideals 74
6.2 at -tight Closure 76
6.3 Applications 77
7 Generalizations of Pairs: Algebras of Maps 79
8 Other Measures of Singularities in Characteristic p 82
8.1 F-rationality 82
8.2 F-injectivity 83
8.3 F-signature and F-splitting Ratio 84
8.4 Hilbert-Kunz(-Monsky) Multiplicity 86
8.5 F-ideals, F-stable Submodules, and F-pure Centers 89
A Canonical Modules and Duality 91
A.1 Canonical Modules, Cohen-Macaulay and Gorenstein Rings 91
A.2 Duality 92
B Divisors 94
C Glossary and Diagrams on Types of Singularities 96
C.1 Glossary of Terms 97
Finite-dimensional Vector Spaces with Frobenius Action 112
1 Introduction 112
2 A Noncommutative Principal Ideal Domain 113
3 Ideal Theory and Divisibility in Noncommutative PIDs 115
3.1 Examples in K{F} 118
4 Matrix Transformations over Noncommutative PIDs 120
5 Module Theory over Noncommutative PIDs 122
6 Computing the Invariant Factors 125
6.1 Injective Frobenius Actions on Finite Dimensional Vector Spaces over a Perfect Field 129
7 The Antinilpotent Case 132
Finiteness and Homological Conditions in Commutative Group Rings 140
1 Introduction 140
2 Finiteness Conditions 141
3 Homological Dimensions and Regularity 144
4 Zero Divisor Controlling Conditions 147
Regular Pullbacks 156
1 Introduction 156
2 Some Background 158
3 Pullbacks of Noetherian Rings 162
4 Pullbacks of Prüfer Rings 164
5 Pullbacks of Coherent Rings 167
6 The n -generator Property in Pullbacks 170
7 Factorization in Pullbacks 176
Noetherian Rings without Finite Normalization 182
1 Introduction 182
2 Normalization and Completion 185
3 Examples between DVRs 187
4 Examples Birationally Dominating a Local Ring 196
5 A Geometric Example 200
6 Strongly Twisted Subrings of Local Noetherian Domains 201
Krull Dimension of Polynomial and Power Series Rings 216
1 Introduction 216
2 A Key Property of R[x] 218
3 The Main Theorem 219
4 Additional Applications 223
5 The Dimension of Power Series Rings 228
The Projective Line over the Integers 232
1 Introduction 232
2 Definitions and Background 233
3 The Coefficient Subset and Radical Elements of Proj (Z[h,k]) 237
4 The Conjecture for Proj (Z[h, k]) and Previous Partial Results 240
5 New Results Supporting the Conjecture 243
6 Summary and Questions 249
On Zero Divisor Graphs 252
1 Introduction 252
2 Survey of Past Research on Zero Divisor Graphs 254
2.1 Beck’s Zero Divisor Graph 254
2.2 Anderson and Livingston’s Zero Divisor Graph 255
2.3 Mulay’s Zero Divisor Graph 257
2.4 Other Zero Divisor Graphs 258
3 Star Graphs 261
4 Graph Homomorphisms and Graphs Associated to Modules 281
5 Cliques 284
6 Girth and Cut Vertices 293
6.1 Girth 293
6.2 Cut Vertices 297
7 Chromatic Numbers and Clique Numbers 299
7.1 Chromatic/Clique Number 1 300
7.2 Chromatic/Clique Number 2 301
7.3 Chromatic/Clique Number 3 301
A Tables for Example 3.14 304
B Graph Theory 306
A Closer Look at Non-unique Factorization via Atomic Decay and Strong Atoms 312
1 Introduction 312
2 Strong Atoms and Prime Ideals 314
3 Atomic Decay in the Ring of Integers of an Algebraic Number Field 316
4 The Fundamental Example of the Failure of Unique Factorization: Z[v-5] 320
5 A More Striking Example 322
6 Concluding Remarks and Questions 325
Erscheint lt. Verlag | 26.4.2012 |
---|---|
Co-Autor | Jason G. Boynton, Bruce Olberding, Sean Sather-Wagstaff, Ryan Schwarz, Karl Schwede, Laura Sheppardson, Sandra Spiroff, Kevin Tucker, John J. Watkins, Ela Celikbas, Scott T. Chapman, Jim Coykendall, Florian Enescu, Neil Epstein, Christina Eubanks-Turner, Sarah Glaz, Ulrich Krause |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Technik | |
ISBN-10 | 3-11-027860-X / 311027860X |
ISBN-13 | 978-3-11-027860-6 / 9783110278606 |
Haben Sie eine Frage zum Produkt? |
Größe: 2,2 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich