On the Local Structure of Morita and Rickard Equivalences between Brauer Blocks - Lluis Puig

On the Local Structure of Morita and Rickard Equivalences between Brauer Blocks

(Autor)

Buch | Hardcover
VII, 261 Seiten
1999 | 1999
Springer Basel (Verlag)
978-3-7643-6156-3 (ISBN)
85,55 inkl. MwSt
Brauer had already introduced the defect of a block and opened the way towards a classification by solving all the problems in defects zero and one, and by providing some evidence for the finiteness of the set of blocks with a given defect. In 1959 he discovered the defect group, and in 1964 Dade determined the blocks with cyclic defect groups.
In 1978 Alperin and Broué discovered the Brauer category, and Broué and the author determined the blocks having a nilpotent Brauer category. In 1979, the author discovered the source algebra which determines all the other current invariants, representing faithfully the block - and found its structure in the nilpotent blocks. Recently, the discovery by Rickard that all blocks with the same cyclic defect group and the same Brauer category have the same homotopic category focussed great interest on the new, loose relationship between blocks called Rickard equivalence.
This book describes the source algebra of a block from the source algebra of a Rickard equivalent block and the source of the Rickard equivalence.

1 Introduction.- 2 General notation, terminology and quoted results.- 3 Noninjective induction of OG-interior algebras.- 4 Hecke OG-interior algebras and noninjective induction.- 5 On the local structure of Hecke OG-interior algebras.- 6 Morita stable equivalences between Brauer blocks.- 7 Basic Morita stable equivalences between Brauer blocks.- 8 The Morita stable equivalent class of a nilpotent block.- 9 The differential Z-grading O-algebra.- 10 DG-modules.- 11 D-algebras and DG-interior algebras.- 12 Induction of DG-interior algebras.- 13 Brauer sections in basic induced DG-interior algebras.- 14 Pointed groups on DG-interior algebras and Higman embeddings.- 15 Hecke DG-interior algebras and noninjective induction.- 16 On the local structure of Hecke DG-interior algebras.- 17 Brauer sections in basic Hecke DG-interior algebras.- 18 Rickard equivalences between Brauer blocks.- 19 Basic Rickard equivalences between Brauer blocks.- References.

"The author investigates the behavior of the local structure of a block under Morita equivalences, stable equivalences of Morita type (called Morita stable equivalences here) and Rickard equivalences. The local structure of a block is expressed mainly in terms of its local category (consisting of local pointed groups and their exomorphisms), its Brauer category (consisting of Brauer pairs and their exomorphisms) and its source algebra."

-Zentralblatt Math

Erscheint lt. Verlag 1.7.1999
Reihe/Serie Progress in Mathematics
Zusatzinfo VII, 261 p.
Verlagsort Basel
Sprache englisch
Maße 155 x 235 mm
Gewicht 600 g
Themenwelt Mathematik / Informatik Mathematik Algebra
Schlagworte Algebra • classification • Equivalence • Finite • Group • group theory • Gruppe (Math.) • Gruppentheorie • Hardcover, Softcover / Mathematik/Arithmetik, Algebra • HC/Mathematik/Arithmetik, Algebra • Invariant • SET
ISBN-10 3-7643-6156-5 / 3764361565
ISBN-13 978-3-7643-6156-3 / 9783764361563
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Begriffe, Sätze und zahlreiche Beispiele in kurzen Lerneinheiten

von Christian Karpfinger

Buch | Softcover (2022)
Springer Spektrum (Verlag)
54,99