Teichmüller Theory in Riemannian Geometry
Springer Basel (Verlag)
978-3-7643-2735-4 (ISBN)
0 Mathematical Preliminaries.- 1 The Manifolds of Teichmüller Theory.- 1.1 The Manifolds A and As.- 1.2 The Riemannian Manifolds M and Ms.- 1.3 The Diffeomorphism Ms /? s ? As.- 1.4 Some Differential Operators and their Adjoints.- 1.5 Proof of Poincaré's Theorem.- 1.6 The Manifold Ms-1 and the Diffeomorphism with Ms / s.- 2 The Construction of Teichmüller Space.- 2.1 A Rapid Course in Geodesic Theory.- 2.2 The Free Action of D0 on M-1.- 2.3 The Proper Action of D0 on M-1.- 2.4 The Construction of Teichmüller Space.- 2.5 The Principal Bundles of Teichmüller Theory.- 2.6 The Weil-Petersson Metric on T(M).- 3 T(M) is a Cell.- 3.1 Dirichlet's Energy on Teichmüller Space.- 3.2 The Properness of Dirichlet's Energy.- 3.3 Teichmüller Space is a Cell.- 3.4 Topological Implications; The Contractibility of D0.- 4 The Complex Structure on Teichmüller Space.- 4.1 Almost Complex Principal Fibre Bundles.- 4.2 Abresch-Fischer Holomorphic Coordinates for A.- 4.3 Abresch-Fischer Holomorphic Coordinates for T(M).- 5 Properties of the Weil-Petersson Metric.- 5.1 The Weil-Petersson Metric is Kähler.- 5.2 The Natural Algebraic Connection on A.- 5.3 Further Properties of the Algebraic Connection and the non-Integrability of the Horizontal Distribution on A.- 5.4 The Curvature of Teichmüller Space with Respect to its Weil-Petersson Metric.- 5.5 An Asymptotic Property of Weil-Petersson Geodesies.- 6 The Pluri-Subharmonicity of Dirichlet's Energy on T(M); T(M) is a Stein-Manifold.- 6.1 Pluri-Subharmonic Functions and Complex Manifolds.- 6.2 Dirichlet's Energy is Strictly Pluri-Subharmonic.- 6.3 Wolf's Form of Dirichlet's Energy on T(M) is Strictly Weil-Petersson Convex.- 6.4 The Nielsen Realization Problem.- A Proof of Lichnerowicz' Formula.- B On Harmonic Maps.- CThe Mumford Compactness Theorem.- D Proof of the Collar Lemma.- E The Levi-Form of Dirichlet's Energy.- F Riemann-Roch and the Dimension of Teichmüller Space.- Indexes.- Index of Notation.- A Chart of the Maps Used.- Index of Key Words.
Erscheint lt. Verlag | 28.4.1992 |
---|---|
Reihe/Serie | Lectures in Mathematics. ETH Zürich |
Zusatzinfo | IV, 220 p. |
Verlagsort | Basel |
Sprache | englisch |
Maße | 178 x 254 mm |
Gewicht | 470 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Schlagworte | Curvature • diffeomorphism • Differential Geometry • Hardcover, Softcover / Mathematik/Analysis • HC/Mathematik/Analysis • manifold • minimal surface • Riemannian Geometry • Riemannsche Geometrie • Teichmüllerscher Raum • Teichmüller Theorie |
ISBN-10 | 3-7643-2735-9 / 3764327359 |
ISBN-13 | 978-3-7643-2735-4 / 9783764327354 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich