Ordinary Differential Equations
Seiten
2012
Springer-Verlag New York Inc.
978-1-4614-3617-1 (ISBN)
Springer-Verlag New York Inc.
978-1-4614-3617-1 (ISBN)
Unlike most texts in differential equations, this textbook gives an early presentation of the Laplace transform, which is then used to motivate and develop many of the remaining differential equation concepts for which it is particularly well suited. For example, the standard solution methods for constant coefficient linear differential equations are immediate and simplified, and solution methods for constant coefficient systems are streamlined. By introducing the Laplace transform early in the text, students become proficient in its use while at the same time learning the standard topics in differential equations. The text also includes proofs of several important theorems that are not usually given in introductory texts. These include a proof of the injectivity of the Laplace transform and a proof of the existence and uniqueness theorem for linear constant coefficient differential equations.
Along with its unique traits, this text contains all the topics needed for a standard three- or four-hour, sophomore-level differential equations course for students majoring in science or engineering. These topics include: first order differential equations, general linear differential equations with constant coefficients, second order linear differential equations with variable coefficients, power series methods, and linear systems of differential equations. It is assumed that the reader has had the equivalent of a one-year course in college calculus.
Along with its unique traits, this text contains all the topics needed for a standard three- or four-hour, sophomore-level differential equations course for students majoring in science or engineering. These topics include: first order differential equations, general linear differential equations with constant coefficients, second order linear differential equations with variable coefficients, power series methods, and linear systems of differential equations. It is assumed that the reader has had the equivalent of a one-year course in college calculus.
William A. Adkins and Mark G. Davidson are currently professors of mathematics at Louisiana State University.
Preface.- 1 First Order Differential Equations.- 2 The Laplace Transform.- 3 Second Order Constant Coefficient Linear Differential Equations.- 4 Linear Constant Coefficient Differential Equations.- 5 Second Order Linear Differential Equations.- 6 Discontinuous Functions and the Laplace Transform.- 7 Power Series Methods.- 8 Matrices .- 9 Linear Systems of Differential Equations.- A Appendix.- B Selected Answers.- C Tables.- Symbol Index.- Index.
Erscheint lt. Verlag | 1.7.2012 |
---|---|
Reihe/Serie | Undergraduate Texts in Mathematics |
Zusatzinfo | 121 Illustrations, black and white; XIII, 799 p. 121 illus. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Schlagworte | discontinuous functions • existence theorem • first order differential equations • general linear differential equations • impulse functions • Laplace transform • matrix operations • Ordinary differential equations • phase plane analysis • power series methods • second order differential equations • systems modeling • systems of linear differential equations • uniqueness theorem |
ISBN-10 | 1-4614-3617-6 / 1461436176 |
ISBN-13 | 978-1-4614-3617-1 / 9781461436171 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Band 5: Hydraulik, Stromfadentheorie, Wellentheorie, Gasdynamik
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
59,95 €