Reliable Knowledge Discovery (eBook)
XVIII, 310 Seiten
Springer New York (Verlag)
978-1-4614-1903-7 (ISBN)
Reliable Knowledge Discovery focuses on theory, methods, and techniques for RKDD, a new sub-field of KDD. It studies the theory and methods to assure the reliability and trustworthiness of discovered knowledge and to maintain the stability and consistency of knowledge discovery processes. RKDD has a broad spectrum of applications, especially in critical domains like medicine, finance, and military.
Reliable Knowledge Discovery also presents methods and techniques for designing robust knowledge-discovery processes. Approaches to assessing the reliability of the discovered knowledge are introduced. Particular attention is paid to methods for reliable feature selection, reliable graph discovery, reliable classification, and stream mining. Estimating the data trustworthiness is covered in this volume as well. Case studies are provided in many chapters.
Reliable Knowledge Discovery is designed for researchers and advanced-level students focused on computer science and electrical engineering as a secondary text or reference. Professionals working in this related field and KDD application developers will also find this book useful.
Reliable Knowledge Discovery focuses on theory, methods, and techniques for RKDD, a new sub-field of KDD. It studies the theory and methods to assure the reliability and trustworthiness of discovered knowledge and to maintain the stability and consistency of knowledge discovery processes. RKDD has a broad spectrum of applications, especially in critical domains like medicine, finance, and military. Reliable Knowledge Discovery also presents methods and techniques for designing robust knowledge-discovery processes. Approaches to assessing the reliability of the discovered knowledge are introduced. Particular attention is paid to methods for reliable feature selection, reliable graph discovery, reliable classification, and stream mining. Estimating the data trustworthiness is covered in this volume as well. Case studies are provided in many chapters. Reliable Knowledge Discovery is designed for researchers and advanced-level students focused on computer science and electrical engineering as a secondary text or reference. Professionals working in this related field and KDD application developers will also find this book useful.
Transductive Reliability Estimation for Individual Classifications in Machine Learning and Data Mining.- Estimating Reliability for Assessing and Correcting Individual Streaming Predictions.- Error Bars for Polynomial Neural Networks.- Robust-Diagnostic Regression: A Prelude for Inducing Reliable Knowledge from Regression.- Reliable Graph Discovery.- Combining Version Spaces and Support Vector Machines for Reliable Classification.- Reliable Ticket Routing in Expert Networks.- Reliable Aggregation on Network Traffic for Web Based Knowledge Discovery.- Sensitivity and Generalization of SVM with Weighted and Reduced Features.- Reliable Gesture Recognition with Transductivie Confidence Machines.- Reliability in A Feature-Selection Process for Intrusion Detection.- The Impact of Sample Size and Data Quality to Classification Reliability.- A Comparative Analysis of Instance-based Penalization Techniques for Classification.- Subsequence Frequency Measurement and its Impact on Reliability of Knowledge Discovery in Single Sequences.- Improving Reliability of Unbalanced Text Mining by Reducing Performance Bias.- Formal Representation and Verification of Ontology Using State Controlled Coloured Petri Nets.- A Reliable System Platform for Group Decision Support under Uncertain Environments.- Index.
Erscheint lt. Verlag | 23.2.2012 |
---|---|
Zusatzinfo | XVIII, 310 p. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Mathematik / Informatik ► Informatik ► Grafik / Design | |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Applications • assessing knowledge reliability • confidence prediction • reliable classification • reliable feature selection • reliable graph discovery • Reliable knowledge discovery • reliable regression • reliable stream mining • Reliable system platform • reliable web mining • robust knowledge-discovery process |
ISBN-10 | 1-4614-1903-4 / 1461419034 |
ISBN-13 | 978-1-4614-1903-7 / 9781461419037 |
Haben Sie eine Frage zum Produkt? |
Größe: 7,0 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich