On Normalized Integral Table Algebras (Fusion Rings) - Zvi Arad, Xu Bangteng, Guiyun Chen, Effi Cohen, Arisha Haj Ihia Hussam, Mikhail Muzychuk

On Normalized Integral Table Algebras (Fusion Rings) (eBook)

Generated by a Faithful Non-real Element of Degree 3
eBook Download: PDF
2011 | 2011
X, 274 Seiten
Springer London (Verlag)
978-0-85729-850-8 (ISBN)
Systemvoraussetzungen
53,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The theory of table algebras was introduced in 1991 by Z. Arad and H. Blau in order to treat, in a uniform way, products of conjugacy classes and irreducible characters of finite groups. Today, table algebra theory is a well-established branch of modern algebra with various applications, including the representation theory of finite groups, algebraic combinatorics and fusion rules algebras. This book presents the latest developments in this area. Its main goal is to give a classification of the Normalized Integral Table Algebras (Fusion Rings) generated by a faithful non-real element of degree 3. Divided into 4 parts, the first gives an outline of the classification approach, while remaining parts separately treat special cases that appear during classification. A particularly unique contribution to the field, can be found in part four, whereby a number of the algebras are linked to the polynomial irreducible representations of the group SL3(C). This book will be of interest to research mathematicians and PhD students working in table algebras, group representation theory, algebraic combinatorics and integral fusion rule algebras.
The theory of table algebras was introduced in 1991 by Z. Arad and H. Blau in order to treat, in a uniform way, products of conjugacy classes and irreducible characters of finite groups. Today, table algebra theory is a well-established branch of modern algebra with various applications, including the representation theory of finite groups, algebraic combinatorics and fusion rules algebras. This book presents the latest developments in this area. Its main goal is to give a classification of the Normalized Integral Table Algebras (Fusion Rings) generated by a faithful non-real element of degree 3. Divided into 4 parts, the first gives an outline of the classification approach, while remaining parts separately treat special cases that appear during classification. A particularly unique contribution to the field, can be found in part four, whereby a number of the algebras are linked to the polynomial irreducible representations of the group SL3(C). This book will be of interest to research mathematicians and PhD students working in table algebras, group representation theory, algebraic combinatorics and integral fusion rule algebras.

Introduction.- Splitting the Main Problem into Four Sub-cases.- A Proof of a Non-existence Sub-case (2).- Preliminary Classification of Sub-case (2).- Finishing the Proofs of the Main Results

Erscheint lt. Verlag 20.7.2011
Reihe/Serie Algebra and Applications
Algebra and Applications
Zusatzinfo X, 274 p.
Verlagsort London
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Graphentheorie
Technik
Schlagworte combinatorics • fusion rings • group representation theory • integral fusion rules algebras • table algebras
ISBN-10 0-85729-850-X / 085729850X
ISBN-13 978-0-85729-850-8 / 9780857298508
Haben Sie eine Frage zum Produkt?
PDFPDF (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich