Lecture Notes on Mean Curvature Flow (eBook)
XII, 168 Seiten
Springer Basel (Verlag)
978-3-0348-0145-4 (ISBN)
Foreword.- Chapter 1. Definition and Short Time Existence.- Chapter 2. Evolution of Geometric Quantities.- Chapter 3. Monotonicity Formula and Type I Singularities.- Chapter 4. Type II Singularities.- Chapter 5. Conclusions and Research Directions.- Appendix A. Quasilinear Parabolic Equations on Manifolds.- Appendix B. Interior Estimates of Ecker and Huisken.- Appendix C. Hamilton’s Maximum Principle for Tensors.- Appendix D. Hamilton’s Matrix Li–Yau–Harnack Inequality in Rn.- Appendix E. Abresch and Langer Classification of Homothetically Shrinking Closed Curves.- Appendix F. Important Results without Proof in the Book.- Bibliography.- Index.
Erscheint lt. Verlag | 28.7.2011 |
---|---|
Reihe/Serie | Progress in Mathematics | Progress in Mathematics |
Zusatzinfo | XII, 168 p. |
Verlagsort | Basel |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik |
Technik | |
Schlagworte | geometric analysis • mean curvature flow • parametric approach |
ISBN-10 | 3-0348-0145-9 / 3034801459 |
ISBN-13 | 978-3-0348-0145-4 / 9783034801454 |
Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich