Mathematics in Kant's Critical Philosophy - Lisa Shabel

Mathematics in Kant's Critical Philosophy

Reflections on Mathematical Practice

(Autor)

Buch | Softcover
190 Seiten
2011
Routledge (Verlag)
978-0-415-51281-7 (ISBN)
67,30 inkl. MwSt
Mathematics in Kant's Critical Philosophy provides a much needed reading (and re-reading) of Kant's theory of the construction of mathematical concepts through a fully contextualized analysis. In this work Lisa Shabel convincingly argues that it is only through an understanding of the relevant eighteenth century mathematics textbooks, and the related mathematical practice, can the material and context necessary for a successful interpretation of Kant's philosophy be provided. This is borne out through sustained readings of Euclid and Woolf in particular, which, when brought together with Kant's work, allows for the elucidation of several key issues and the reinterpretation of many hitherto opaque and long debated passages.

Lisa Shabel is Associate Professor of Philosophy at The Ohio State University, USA.

Preface Introduction PART 1. Euclid: The role of the Euclidean diagram in the Elements 1.0. Euclid: An Introduction 1.1. Characterizing the Euclidean Diagram: Plane Geometry 1.1.1. The Definitions 1.1.2. The Postulates 1.1.3. The Common Notions 1.2. Reading the Euclidean Diagram: Warranting Implicit Assumptions 1.2.1. The Incidence Axioms 1.2.2. The Betweenness Axioms 1.2.3. The Congruence Axioms 1.2.4. The Continuity Axioms 1.2.5. The Parallelism Axiom 1.3. Countering Common Objections to the Euclidean Method 1.4. Characterizing and Reading the Euclidean Diagram: the Arithmetic Books 1.5. The Role of the Euclidean Diagram in Indirect Proof: A Special Case of Pre-Formal Demonstration 1.6. Euclid: Conclusion PART 2. Wolff: The Elementa and Early Modern Mathematical Practice 2.0. Wolff: An Introduction 2.1. Euclid's Elements in the Early Modern Period 2.2. Geometry and Arithmetic in Wolff's Elementa and Other Early Modern Textbooks 2.2.1. Wolff's Mathematical Method 2.2.2. Elementa Geometriae 2.2.3. Elementa Arithmeticae 2.2.4. Early Modern Foundational Views: Descartes and Barrow on the Relationship Between Geometry and Arithmetic 2.3. Algebra and Analysis in Wolff's Elementa: The Tools that Relate Arithmetic and Geometry in the Early Modern Period 2.3.1. Viete and Descartes: The Beginnings of Analytic Geometry 2.3.2. The Construction of Equations as a Standard Topic in Seventeenth and Eighteenth Century Textbooks 2.3.3. Constructing Equations in Wolff's Elementa 2.4. Wolff: Conclusion PART 3. Kant: Mathematics in the Critique of Pure Reason 3.0. Kant: An Introduction 3.1. Pure and Empirical Intuitions 3.1.1. What is a Pure Intuition? 3.1.2. Two Types of Mathematical Demonstration 3.1.3. Pure Intuition and the Synthetic A Priority of Mathematical Judgments 3.1.4. Objections to the Role of Pure Intuition in Mathematical Demonstration 3.2. The Schematism 3.3. Algebraic Cognition 3.3.1. Kant on the Symbolic Construction of Mathematical Concepts 3.3.2. Shared Assumptions: The Prevailing View of Kant on Symbolic Construction 3.3.3. Symbolic Construction: A New Reading 3.4. Kant: Conclusion References Index

Erscheint lt. Verlag 13.12.2011
Reihe/Serie Studies in Philosophy
Verlagsort London
Sprache englisch
Maße 152 x 229 mm
Gewicht 350 g
Themenwelt Geisteswissenschaften Philosophie Geschichte der Philosophie
Geisteswissenschaften Philosophie Philosophie der Neuzeit
Mathematik / Informatik Mathematik Logik / Mengenlehre
ISBN-10 0-415-51281-6 / 0415512816
ISBN-13 978-0-415-51281-7 / 9780415512817
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
eine Biographie

von Manfred Kühn

Buch | Hardcover (2024)
C.H.Beck (Verlag)
25,00
die kolonialen Wurzeln der französischen Theorie

von Onur Erdur

Buch | Hardcover (2024)
Matthes & Seitz Berlin (Verlag)
28,00
oder Das Leben Montaignes in einer Frage und zwanzig Antworten

von Sarah Bakewell

Buch | Softcover (2023)
C.H.Beck (Verlag)
18,00