Mirrors and Reflections (eBook)
XII, 184 Seiten
Springer New York (Verlag)
978-0-387-79066-4 (ISBN)
"e;Mirrors and Reflections"e; presents a systematic and elementary introduction to the properties of finite groups generated by reflections. The approach is based on fundamental geometric considerations in Coxeter complexes, and emphasizes the intuitive geometric aspects of the theory of reflection groups. The exposition is directed at advanced undergraduates and first-year graduate students, and features a large number of exercises at various levels of difficulty.
- Part I Geometric Background.- 1. Affine Euclidean Space ARn.-1.1 Euclidean Space Rn.- 1.2 Affine Euclidean Space ARn.- 1.3 Affine Subspaces.- 1.3.1 Subspaces.- 1.3.2 Systems of Linear Equations.- 1.3.3 Points and Lines .- 1.3.4 Planes .- 1.3.5 Hyperplanes.- 1.3.6 Orthogonal Projection.- 1.4 Half-Spaces.- 1.5 Bases and Coordinates.- 1.6 Convex Sets.- 2 Isometries of ARn .- 2.1 Fixed Points of Groups of Isometries.- 2.2 Structure of IsomARn .- 2.2.1 Translations.- 2.2.2 Orthogonal Transformations .- 3 Hyperplane Arrangements.- 3.1 Faces of a Hyperplane Arrangement.- 3.2 Chambers.- 3.3 Galleries.- 3.4 Polyhedra.- 4 Polyhedral Cones.- 4.1 Finitely Generated Cones .- 4.1.1 Cones.- .1.2 Extreme Vectors and Edges .- 4.2 Simple Systems of Generators.- 4.3 Duality .- 4.4 Duality for Simplicial Cones .- 5 Faces of a Simplicial Cone.- Part II Mirrors, Reflections, Roots.- 5 Mirrors and Reflections.- 6 Systems of Mirrors.- 6.1 Systems of Mirrors.- 6.2 Finite Reflection Groups.- 7 Dihedral Groups.- 7.1 Groups Generated by two Involutions.- 7.2 Proof of Theorem 7.1 .- 7.3 Dihedral Groups: Geometric Interpretation .- 8 Root Systems.- 8.1 Mirrors and their Normal Vectors.- 8.2 Root Systems.- 8.3 Planar Root Systems.- 8.4 Positive and Simple Systems.- 9 Root Systems An¡1, BCn, Dn.- 9.1 Root System An¡1 .- 9.1.1 A Few Words about Permutations .- 9.1.2 Permutation Representation of Symn .- 9.1.3 Regular Simplices .- 9.1.4 The Root System An¡1 .- 9.1.5 The Standard Simple System.- 9.1.6 Action of Symn on the Set of all Simple Systems .- 9.2 Root Systems of Types Cn and Bn .- 9.2.1 Hyperoctahedral Group.- 9.2.2 Admissible Orderings.- 9.2.3 Root Systems Cn and Bn.- 9.2.4 Action of W on C.- 9.3 The Root System Dn.- Part III Coxeter Complexes.- 10 Chambers.- 11 Generation.- 11.1 Simple Reflections.- 11.2 Foldings.- 11.3 Galleries and Paths.- 11.4 Action of W on C.- 11.5 Paths and Foldings.- 11.6 Simple Transitivity of W on C: Proof of Theorem 11.6.- 12 Coxeter Complex.- 12.1 Labeling of the Coxeter Complex.- 12.2 Length of Elements in W.- 12.3 Opposite Chamber.- 12.4 Isotropy Groups.- 12.5 Parabolic Subgroups.- 13 Residues.- 13.1 Residues.- 13.2 Example.- 13.3 The Mirror System of a Residue.- 13.4 Residues are Convex.- 13.5 Residues: the Gate Property.- 13.6 The Opposite Chamber.- 14 Generalized Permutahedra.- Part IV Classification.- 15 Generators and Relations.- 15.1 Reflection Groups are Coxeter Groups. 15.2 Proof of Theorem 15.1.- 16 Classification of Finite Reflection Groups.- 16.1 Coxeter Graph.- 16.2 Decomposable Reflection Groups.- 16.3 Labeled Graphs and Associated Bilinear Forms.- 16.4 Classification of Positive Definite Graphs.- 17 Construction of Root Systems.- 17.1 Root System An.- 17.2 Root System Bn, n > 2.- 17.3 Root System Cn, n > 2.- 17.4 Root System Dn, n > 4.- 17.5 Root System E8.- 17.6 Root System E7 17.7 Root System E6.- 17.8 Root System F4 .- 9 Root System G2 .- 17.10 Crystallographic Condition .- 18 Orders of Reflection Groups .- Part V Three-Dimensional Reflection Groups.- 19 Reflection Groups in Three Dimensions.- 19.1 Planar Mirror Systems.- 19.2 From Mirror Systems to Tessellations of the Sphere.- 19.3 The Area of a Spherical Triangle.- 19.4 Classification of Finite Reflection Groups in Three Dimensions.- 20 Icosahedron.- 20.1 Construction.- 20.2 Uniqueness and Rigidity.- 20.3 The Symmetry Group of the Icosahedron.- Part VI Appendices.- A The Forgotten Art of Blackboard Drawing.- B Hints and Solutions to Selected Exercises.- References.- Index.
Erscheint lt. Verlag | 7.11.2009 |
---|---|
Reihe/Serie | Universitext |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Technik | |
Schlagworte | abstract algebra • Algebra • area • classification • convex polyhedra • Coxeter Group • Finite Semigroups • geometric group theory • Graph • group theory • Lie Algebras • linear algebra • Parabolic Subgroups • Permutation • reflection groups • SiM • Symmetry group |
ISBN-10 | 0-387-79066-7 / 0387790667 |
ISBN-13 | 978-0-387-79066-4 / 9780387790664 |
Haben Sie eine Frage zum Produkt? |
Größe: 3,4 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich