Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest.In addition to the primary information given in the Handbook, there are references to relevant articles, books or lecture notes to help the reader. An excellent index has been included which is extensive and not limited to definitions, theorems etc.The Handbook of Algebra will publish articles as they are received and thus the reader will find in this third volume articles from twelve different sections. The advantages of this scheme are two-fold: accepted articles will be published quickly and the outline of the Handbook can be allowed to evolve as the various volumes are published.A particularly important function of the Handbook is to provide professional mathematicians working in an area other than their own with sufficient information on the topic in question if and when it is needed.- Thorough and practical source of information - Provides in-depth coverage of new topics in algebra - Includes references to relevant articles, books and lecture notes
Outline of the Series
Publisher Summary
This chapter presents the various concepts of algebra, such as linear algebra, linear (in)dependence, galois theory, and algebraic number theory.
(as of June 2007)
Philosophy and principles of the Handbook of Algebra
Compared to the outline in Volume 1 this version differs in several aspects.
First there is a major shift in emphasis away from completeness as far as the more elementary material is concerned and towards more emphasis on recent developments and active areas. Second the plan is now more dynamic in that there is no longer a fixed list of topics to be covered, determined long in advance. Instead there is a more flexible nonrigid list that can and does change in response to new developments and availability of authors.
The new policy, starting with Volume 2, is to work with a dynamic list of topics that should be covered, to arrange these in sections and larger groups according to the major divisions into which algebra falls, and to publish collections of contributions (i.e. chapters) as they become available from the invited authors.
The coding below is by style and is as follows.
– Author(s) in bold, followed by chapter title: articles (chapters) that have been received and are published or are being published in this volume.
– Chapter title in italic: chapters that are being written.
– Chapter title in plain text: topics that should be covered but for which no author has yet been definitely contracted.
Chapters that are included in Volumes 1–5 have a (x; yy pp.) after them, where ‘x’ is the volume number and ‘yy’ is the number of pages.
Compared to the plan that appeared in Volume 1 the section on “Representation and invariant theory” has been thoroughly revised from Volume 2 on.
Compared to the plan that appeared in Volume 4, Section 4H (Rings and algebras with additional structure) has been split into two parts: 4H (Hopf algebras and related structures) and 4I (Other rings and algebras with additional structure). The old Section 4I (Witt vectors) has been absorbed into the section on Hopf algebras.
There also a few more changes; mostly addition of some more topics.
Editorial set-up
Managing editor: M Hazewinkel.
Editorial board: M. Artin, M. Nagata, C. Procesi, O. Tausky-Todd†, R.G. Swan, P.M. Cohn, A. Dress, J. Tits, N.J.A. Sloane, C. Faith, S.I. A’dyan, Y. Ihara, L. Small, E. Manes, I.G. Macdonald, M. Marcus, L.A. Bokut', Eliezer (Louis Halle) Rowen, John S. Wilson, Vlastimil Dlab. Note that three editors have been added starting with Volume 5.
Planned publishing schedule (as of July 2007) 1996: Volume 1 (published)
2001: Volume 2 (published)
2003: Volume 3 (published)
2005: Volume 4 (published)
2007: Volume 5 (last quarter)
Further volumes at the rate of one every year.
Section 1. Linear algebra. Fields. Algebraic number theory
A. Linear Algebra
G.P. Egorychev, Van der Waerden conjecture and applications (1; 22 pp.)
V.L. Girko, Random matrices (1; 52 pp.)
A.N. Malyshev, Matrix equations. Factorization of matrices (1; 38 pp.)
L. Rodman, Matrix functions (1; 38 pp.)
Correction to the chapter by L. Rodman, Matrix functions (3; 1 p.)
J.A. Hermida-Alonso, Linear algebra over commutative rings (3; 49 pp.)
Linear inequalities (also involving matrices)
Orderings (partial and total) on vectors and matrices
Positive matrices
Structured matrices such as Toeplitz and Hankel
Integral matrices. Matrices over other rings and fields.
Quasideterminants, and determinants over noncommutative fields.
Nonnegative matrices, positive definite matrices, and doubly nonnegative matrices.
Linear algebra over skew fields
B. Linear (In)dependence
J.P.S. Kung, Matroids (1; 28 pp.)
C. Algebras Arising from Vector Spaces
Clifford algebras, related algebras, and applications
Other algebras arising from vector spaces (working title only)
D. Fields, Galois Theory, and Algebraic Number Theory
(There is also a chapter on ordered fields in Section 4)
J.K. Deveney, J.N. Mordeson, Higher derivation Galois theory of inseparable field extensions (1; 34 pp.)
I. Fesenko, Complete discrete valuation fields. Abelian local class field theories (1; 48 pp.)
M. Jarden, Infinite Galois theory (1; 52 pp.)
R. Lidl, H. Niederreiter, Finite fields and their applications (1; 44 pp.) W. Narkiewicz, Global class field theory (1; 30 pp.)
H. van Tilborg, Finite fields and error correcting codes (1; 28 pp.)
Skew fields and division rings. Brauer group
Topological and valued fields. Valuation theory
Zeta and L-functions of fields and related topics
Structure of Galois modules
Constructive Galois theory (realizations of groups as Galois groups)
Dessins d’enfants
Hopf Galois theory
T. Albu, From field theoretic to abstract co-Galois theory (5; 81 pp.)
E. Nonabelian Class Field Theory and the Langlands Program
(to be arranged in several chapters by Y. Ihara)
F. Generalizations of Fields and Related Objects
U. Hebisch, H.J. Weinert, Semi-rings and semi-fields (1; 38 pp.)
G. Pilz, Near rings and near fields (1; 36 pp.)
Section 2. Category theory. Homological and homotopical algebra. Methods from logic
A. Category Theory
S. MacLane, I. Moerdijk, Topos theory (1; 28 pp.)
R. Street, Categorical structures (1; 50 pp.)
B.I. Plotkin, Algebra, categories and databases (2; 71 pp.)
P.S. Scott, Some aspects of categories in computer science (2; 71 pp.)
E. Manes, Monads of sets (3; 48 pp.)
M. Markl, Operads and PROPs (5; 54 pp.)
B. Homological Algebra. Cohomology. Cohomological Methods in Algebra.
Homotopical Algebra
J.F. Carlson, The cohomology of groups (1; 30 pp.)
A. Generalov, Relative homological algebra. Cohomology of categories, posets, and coalgebras (1; 28 pp.)
J.F. Jardine, Homotopy and homotopical algebra (1; 32 pp.)
B. Keller, Derived categories and their uses (1; 32 pp.)
A.Ya. Helemskii, Homology for the algebras of analysis (2; 143 pp.))
Galois cohomology
Cohomology of commutative and associative algebras
Cohomology of Lie algebras
Cohomology of group schemes
V. Lyubashenko, O. Manzyuk, A$$-algebras, A$$-categories, and A$$-functors (5; 46 pp.)
B.V. Novikov, 0-Cohomology of semigroups (5; 21 pp.)
C. Algebraic K-theory
A. Kuku, Classical algebraic K-theory: the functors K0, K1, K2 (3; 55 pp.)
A. Kuku, Algebraic K-theory: the higher K-functors (4; 122 pp.)
Grothendieck groups
K2 and symbols
KK-theory and EXT
Hilbert C* -modules
Index theory for elliptic operators over C* algebras
Simplicial algebraic K-theory
Chern character in algebraic K-theory
Noncommutative differential geometry
K-theory of noncommutative rings
Algebraic L-theory
Cyclic cohomology
Asymptotic morphisms and E-theory
Hirzebruch formulae
D. Model Theoretic Algebra
(See also P.C. Eklof, Whitehead modules, in Section 3B)
M. Prest, Model theory for algebra (3; 31 pp.)
M. Prest, Model theory and modules (3; 34 pp.)
Logical properties of fields and applications
Recursive algebras
Logical properties of Boolean algebras
F.O. Wagner, Stable groups (2; 36 pp.)
The Ax–Ershov–Kochen theorem and its relatives and applications
E. Rings up to Homotopy
Rings up to homotopy
Simplicial algebras
Section 3. Commutative and associative rings and algebras
A. Commutative Rings and Algebras
(See also C. Faith, Coherent rings and annihilator conditions in matrix and polynomial rings, in Section 3B)
(See also Freeness theorems for group rings and Lie algebras in Section 5A)
J.P. Lafon, Ideals and modules (1; 24 pp.)
General theory. Radicals, prime ideals, etc. Local rings (general). Finiteness and chain conditions
Extensions. Galois theory of rings
Modules with quadratic form
Homological algebra and commutative rings. Ext, Tor, etc. Special properties (p.i.d., factorial, Gorenstein,...
Erscheint lt. Verlag | 6.3.2008 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
Technik | |
ISBN-10 | 0-08-056499-2 / 0080564992 |
ISBN-13 | 978-0-08-056499-9 / 9780080564999 |
Haben Sie eine Frage zum Produkt? |
Größe: 4,7 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 11,2 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich