Gradient Flows (eBook)

In Metric Spaces and in the Space of Probability Measures
eBook Download: PDF
2006 | 2005
VII, 333 Seiten
Springer Basel (Verlag)
978-3-7643-7309-2 (ISBN)

Lese- und Medienproben

Gradient Flows - Luigi Ambrosio, Nicola Gigli, Giuseppe Savare
Systemvoraussetzungen
36,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book is devoted to a theory of gradient ?ows in spaces which are not nec- sarily endowed with a natural linear or di?erentiable structure. It is made of two parts, the ?rst one concerning gradient ?ows in metric spaces and the second one 2 1 devoted to gradient ?ows in the L -Wasserstein space of probability measures on p a separable Hilbert space X (we consider the L -Wasserstein distance, p? (1,?), as well). The two parts have some connections, due to the fact that the Wasserstein space of probability measures provides an important model to which the 'metric' theory applies, but the book is conceived in such a way that the two parts can be read independently, the ?rst one by the reader more interested to Non-Smooth Analysis and Analysis in Metric Spaces, and the second one by the reader more oriented to theapplications in Partial Di?erential Equations, Measure Theory and Probability.

Gradient Flow in Metric Spaces.- Curves and Gradients in Metric Spaces.- Existence of Curves of Maximal Slope and their Variational Approximation.- Proofs of the Convergence Theorems.- Uniqueness, Generation of Contraction Semigroups, Error Estimates.- Notation.- Gradient Flow in the Space of Probability Measures.- Preliminary Results on Measure Theory.- The Optimal Transportation Problem.- The Wasserstein Distance and its Behaviour along Geodesics.- Absolutely Continuous Curves in Pp(X) and the Continuity Equation.- Convex Functionals in Pp(X).- Metric Slope and Subdifferential Calculus in Pp(X).- Gradient Flows and Curves of Maximal Slope in Pp(X).

Erscheint lt. Verlag 30.3.2006
Reihe/Serie Lectures in Mathematics. ETH Zürich
Lectures in Mathematics. ETH Zürich
Zusatzinfo VII, 333 p.
Verlagsort Basel
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Technik
Schlagworte Calculus • differential equation • Gradient flows • hilbert space • Maximum • measure • measure theory • Metric Spaces • Probability measures • Riemannian structures • Variation
ISBN-10 3-7643-7309-1 / 3764373091
ISBN-13 978-3-7643-7309-2 / 9783764373092
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Jim Sizemore; John Paul Mueller

eBook Download (2024)
Wiley-VCH GmbH (Verlag)
24,99