Determining Spectra in Quantum Theory (eBook)
X, 219 Seiten
Birkhäuser Boston (Verlag)
978-0-8176-4439-0 (ISBN)
This work focuses on various known criteria in the spectral theory of selfadjoint operators. The concise, unified presentation is aimed at graduate students and researchers working in the spectral theory of Schrodinger operators with either fixed or random potentials. But given the large gap this book fills in the literature, it will serve a wider audience of mathematical physicists in its contribution to works in spectral theory.
Themainobjectiveofthisbookistogiveacollectionofcriteriaavailablein the spectral theory of selfadjoint operators, and to identify the spectrum and its components in the Lebesgue decomposition. Many of these criteria were published in several articles in di?erent journals. We collected them, added some and gave some overview that can serve as a platform for further research activities. Spectral theory of Schr* odinger type operators has a long history; however the most widely used methods were limited in number. For any selfadjoint operatorA on a separable Hilbert space the spectrum is identi?ed by looking atthetotalspectralmeasureassociatedwithit;oftenstudyingsuchameasure meant looking at some transform of the measure. The transforms were of the form f,?(A)f which is expressible, by the spectral theorem, as ?(x)du (x) for some ?nite measureu . The two most widely used functions? were the sx ?1 exponential function?(x)=e and the inverse function?(x)=(x?z) . These functions are "e;usable"e; in the sense that they can be manipulated with respect to addition of operators, which is what one considers most often in the spectral theory of Schr* odinger type operators. Starting with this basic structure we look at the transforms of measures from which we can recover the measures and their components in Chapter 1. In Chapter 2 we repeat the standard spectral theory of selfadjoint op- ators. The spectral theorem is given also in the Hahn-Hellinger form. Both Chapter 1 and Chapter 2 also serve to introduce a series of de?nitions and notations, as they prepare the background which is necessary for the criteria in Chapter 3.
* Preface * Measures and Transforms > Measures > Fourier Transform > The Wavelet Transform > Borel Transform > Gesztesy–Krein–Simon 'E' Function > Notes * Selfadjointness and Spectrum > Selfadjointness > Spectrum and Resolvent Sets > Spectral Theorem > Spectrol Measures and Spectrum > Spectral Theorem in the Hahn–Hellinger Form > Components of the Spectrum > Characterization of the States in Spectral Subspaces > Notes * Criteria for Identifying the Spectrum > Borel Transform > Fourier Transform > Wavelet Transform > Eigenfunctions > Commutators > Criteria Using Scattering Theory > Notes * Operators of Interest > Unperturbed Operators > Perturbed Operators > Notes * Applications > Borel Transforms > Scattering > Notes * References * Index
Erscheint lt. Verlag | 12.9.2006 |
---|---|
Reihe/Serie | Progress in Mathematical Physics | Progress in Mathematical Physics |
Zusatzinfo | X, 219 p. |
Verlagsort | Boston |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik |
Naturwissenschaften ► Physik / Astronomie ► Astronomie / Astrophysik | |
Technik | |
Schlagworte | disordered system • Partial differential equations • Potential • Quantum Theory • scattering theory • spectral theory • Wavelet |
ISBN-10 | 0-8176-4439-3 / 0817644393 |
ISBN-13 | 978-0-8176-4439-0 / 9780817644390 |
Haben Sie eine Frage zum Produkt? |
Größe: 1,7 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich