Dynamic Surface Control of Uncertain Nonlinear Systems -  J. Karl Hedrick,  Bongsob Song

Dynamic Surface Control of Uncertain Nonlinear Systems (eBook)

An LMI Approach
eBook Download: PDF
2011 | 2011
XIV, 254 Seiten
Springer London (Verlag)
978-0-85729-632-0 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Although the problem of nonlinear controller design is as old as that of linear controller design, the systematic design methods framed in response are more sparse. Given the range and complexity of nonlinear systems, effective new methods of control design are therefore of significant importance. Dynamic Surface Control of Uncertain Nonlinear Systems provides a theoretically rigorous and practical introduction to nonlinear control design. The convex optimization approach applied to good effect in linear systems is extended to the nonlinear case using the new dynamic surface control (DSC) algorithm developed by the authors. A variety of problems - DSC design, output feedback, input saturation and fault-tolerant control among them - are considered. The inclusion of applications material demonstrates the real significance of the DSC algorithm, which is robust and easy to use, for nonlinear systems with uncertainty in automotive and robotics. Written for the researcher and graduate student of nonlinear control theory, this book will provide the applied mathematician and engineer alike with a set of powerful tools for nonlinear control design. It will also be of interest to practitioners working with a mechatronic systems in aerospace, manufacturing and automotive and robotics, milieux.

Bongsob Song is currently an associate professor of Mechanical Engineering, Ajou University, Korea. His research interests include nonlinear control theory, fault tolerant control, and optimization with the application of automotive control. He is currently the Director of Automatic Control Laboratory at Ajou University and has been awarded many research grants for his automotive control group. He has served as a referee for industiral and academic research projects on vehicle control and active safety vehicle in Korea. J. Karl Hedrick is currently the James Marshall Wells Professor of Mechanical Engineering at the University of California at Berkeley, USA. His research focuses on the application of advanced control theory to a wide variety of vehicle dynamic systems including automotive, aircraft and ocean vehicles. He is currently the Director of Berkeley's Vehicle Dynamics Laboratory as well as the PI of the Office of Naval Research center at Berkeley, the Center for the Collaborative Control of Unmanned Vehicles. Before coming to Berkeley he was a Professor of Mechanical Engineering at MIT from 1974-1988. He is was the chairman of the International Association of Vehicle System Dynamics (IAVSD) 20th Symposium, held in August of 2007 and was the editor of the Vehicle Systems Dynamics Journal. He is a Fellow of ASME where he has served as Chairman of the Dynamic Systems and Controls Division and as Chairman of the Honors Committee. He is also a member of SAE and AIAA. He has been awarded a number of honors including, ASME, Dynamic Systems and Control Division's Outstanding Investigator Award, 2000, ASME, DSM&C Journal's Best Paper Award (1983&2001), IEEE Transactions on Control Systems and Technology's Outstanding Paper Award (1998), and the American Automatic Control Council's O. Hugo Schuck Best Paper Award (2003). He was awarded ASME's 2006 Rufus Oldenburger Medal which recognizes significant contributions and outstanding achievements in the field of automatic control. In 2009 he delivered the Nyquist Lecture at the ASME 2009 DSCC. He is currently the Editor of the ASME Journal of Dynamic Systems, Measurement and Control.
Although the problem of nonlinear controller design is as old as that of linear controller design, the systematic design methods framed in response are more sparse. Given the range and complexity of nonlinear systems, effective new methods of control design are therefore of significant importance. Dynamic Surface Control of Uncertain Nonlinear Systems provides a theoretically rigorous and practical introduction to nonlinear control design. The convex optimization approach applied to good effect in linear systems is extended to the nonlinear case using the new dynamic surface control (DSC) algorithm developed by the authors. A variety of problems DSC design, output feedback, input saturation and fault-tolerant control among them are considered. The inclusion of applications material demonstrates the real significance of the DSC algorithm, which is robust and easy to use, for nonlinear systems with uncertainty in automotive and robotics. Written for the researcher and graduate student of nonlinear control theory, this book will provide the applied mathematician and engineer alike with a set of powerful tools for nonlinear control design. It will also be of interest to practitioners working with a mechatronic systems in aerospace, manufacturing and automotive and robotics, milieux.

Bongsob Song is currently an associate professor of Mechanical Engineering, Ajou University, Korea. His research interests include nonlinear control theory, fault tolerant control, and optimization with the application of automotive control. He is currently the Director of Automatic Control Laboratory at Ajou University and has been awarded many research grants for his automotive control group. He has served as a referee for industiral and academic research projects on vehicle control and active safety vehicle in Korea. J. Karl Hedrick is currently the James Marshall Wells Professor of Mechanical Engineering at the University of California at Berkeley, USA. His research focuses on the application of advanced control theory to a wide variety of vehicle dynamic systems including automotive, aircraft and ocean vehicles. He is currently the Director of Berkeley’s Vehicle Dynamics Laboratory as well as the PI of the Office of Naval Research center at Berkeley, the Center for the Collaborative Control of Unmanned Vehicles. Before coming to Berkeley he was a Professor of Mechanical Engineering at MIT from 1974-1988. He is was the chairman of the International Association of Vehicle System Dynamics (IAVSD) 20th Symposium, held in August of 2007 and was the editor of the Vehicle Systems Dynamics Journal. He is a Fellow of ASME where he has served as Chairman of the Dynamic Systems and Controls Division and as Chairman of the Honors Committee. He is also a member of SAE and AIAA. He has been awarded a number of honors including, ASME, Dynamic Systems and Control Division’s Outstanding Investigator Award, 2000, ASME, DSM&C Journal’s Best Paper Award (1983&2001), IEEE Transactions on Control Systems and Technology’s Outstanding Paper Award (1998), and the American Automatic Control Council’s O. Hugo Schuck Best Paper Award (2003). He was awarded ASME’s 2006 Rufus Oldenburger Medal which recognizes significant contributions and outstanding achievements in the field of automatic control. In 2009 he delivered the Nyquist Lecture at the ASME 2009 DSCC. He is currently the Editor of the ASME Journal of Dynamic Systems, Measurement and Control.

Introduction.- Dynamic Surface Control.- Robustness to Uncertain Nonlinear Systems. Observer-based Dynamic Surface Control.- Constrained Stabilization Considering Input Saturation.- Fault-tolerant Control.- Fault-tolerant Control System for AHS.- Application to Mechanical Interconnected Systems.- Appendix: Proofs of Lemmas.

Erscheint lt. Verlag 16.5.2011
Reihe/Serie Communications and Control Engineering
Zusatzinfo XIV, 254 p.
Verlagsort London
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Technik Elektrotechnik / Energietechnik
Technik Fahrzeugbau / Schiffbau
Schlagworte Automotive Control • Control Theory • Convex Optimization • Dynamic Surface Control • Interconnected Systems • LMI • Nonlinear Control • Nonlinear Systems • Robot control • Sliding-Mode Control
ISBN-10 0-85729-632-9 / 0857296329
ISBN-13 978-0-85729-632-0 / 9780857296320
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Angewandte Analysis im Bachelorstudium

von Michael Knorrenschild

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99

von Siegfried Völkel; Horst Bach; Jürgen Schäfer …

eBook Download (2024)
Carl Hanser Fachbuchverlag
34,99