Progress in Galois Theory (eBook)

Proceedings of John Thompson's 70th Birthday Conference
eBook Download: PDF
2006 | 2005
X, 168 Seiten
Springer US (Verlag)
978-0-387-23534-9 (ISBN)

Lese- und Medienproben

Progress in Galois Theory -
Systemvoraussetzungen
106,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The legacy of Galois was the beginning of Galois theory as well as group theory. From this common origin, the development of group theory took its own course, which led to great advances in the latter half of the 20th cen­ tury. It was John Thompson who shaped finite group theory like no-one else, leading the way towards a major milestone of 20th century mathematics, the classification of finite simple groups. After the classification was announced around 1980, it was again J. Thomp­ son who led the way in exploring its implications for Galois theory. The first question is whether all simple groups occur as Galois groups over the rationals (and related fields), and secondly, how can this be used to show that all finite groups occur (the 'Inverse Problem of Galois Theory'). What are the implica­ tions for the stmcture and representations of the absolute Galois group of the rationals (and other fields)? Various other applications to algebra and number theory have been found, most prominently, to the theory of algebraic curves (e.g., the Guralnick-Thompson Conjecture on the Galois theory of covers of the Riemann sphere).
The legacy of Galois was the beginning of Galois theory as well as group theory. From this common origin, the development of group theory took its own course, which led to great advances in the latter half of the 20th cen- tury. It was John Thompson who shaped finite group theory like no-one else, leading the way towards a major milestone of 20th century mathematics, the classification of finite simple groups. After the classification was announced around 1980, it was again J. Thomp- son who led the way in exploring its implications for Galois theory. The first question is whether all simple groups occur as Galois groups over the rationals (and related fields), and secondly, how can this be used to show that all finite groups occur (the 'Inverse Problem of Galois Theory'). What are the implica- tions for the stmcture and representations of the absolute Galois group of the rationals (and other fields)? Various other applications to algebra and number theory have been found, most prominently, to the theory of algebraic curves (e.g., the Guralnick-Thompson Conjecture on the Galois theory of covers of the Riemann sphere).

Supplementary Thoughts on Symplectic Groups.- Automorphisms of the Modular Curve.- Reducing the Fontaine-Mazur Conjecture to Group Theory.- Relating Two Genus 0 Problems of John Thompson.- Relatively Projective Groups as Absolute Galois Groups.- Invariants of Binary Forms.- Some Classical Views on the Parameters of the Grothendieck-Teichmüller Group.- The Image of a Hurwitz Space Under the Moduli Map.- Very Simple Representations: Variations on a Theme of Clifford.

Erscheint lt. Verlag 10.8.2006
Reihe/Serie Developments in Mathematics
Developments in Mathematics
Zusatzinfo X, 168 p.
Verlagsort New York
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Algebra
Technik
Schlagworte Algebra • Algebraic Geometry • arithmetic • Galois Theory • Geometry • Grothendieck Topology • group theory • Invariant • modular curve • Morphism
ISBN-10 0-387-23534-5 / 0387235345
ISBN-13 978-0-387-23534-9 / 9780387235349
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich