Generalized Estimating Equations (eBook)
XV, 144 Seiten
Springer New York (Verlag)
978-1-4614-0499-6 (ISBN)
Generalized estimating equations have become increasingly popular in biometrical, econometrical, and psychometrical applications because they overcome the classical assumptions of statistics, i.e. independence and normality, which are too restrictive for many problems.
Therefore, the main goal of this book is to give a systematic presentation of the original generalized estimating equations (GEE) and some of its further developments. Subsequently, the emphasis is put on the unification of various GEE approaches. This is done by the use of two different estimation techniques, the pseudo maximum likelihood (PML) method and the generalized method of moments (GMM).
The author details the statistical foundation of the GEE approach using more general estimation techniques. The book could therefore be used as basis for a course to graduate students in statistics, biostatistics, or econometrics, and will be useful to practitioners in the same fields.
After studying statistics and mathematics at the University of Munich, Andreas Ziegler obtained his doctoral degree from the University of Dortmund (Germany) for his thesis on methodological developments on generalized estimating equations. In the past 15 years, he has authored or co-authored more than 300 journal articles and 6 books. He has received several awards for his methodological developments and collaborative studies in clinical trials and genetic epidemiology. Andreas Ziegler is professor and head of the Institute of Medical Biometry and Statistics at the University of Lübeck (Germany).
Generalized estimating equations have become increasingly popular in biometrical, econometrical, and psychometrical applications because they overcome the classical assumptions of statistics, i.e. independence and normality, which are too restrictive for many problems.Therefore, the main goal of this book is to give a systematic presentation of the original generalized estimating equations (GEE) and some of its further developments. Subsequently, the emphasis is put on the unification of various GEE approaches. This is done by the use of two different estimation techniques, the pseudo maximum likelihood (PML) method and the generalized method of moments (GMM).The author details the statistical foundation of the GEE approach using more general estimation techniques. The book could therefore be used as basis for a course to graduate students in statistics, biostatistics, or econometrics, and will be useful to practitioners in the same fields.
After studying statistics and mathematics at the University of Munich, Andreas Ziegler obtained his doctoral degree from the University of Dortmund (Germany) for his thesis on methodological developments on generalized estimating equations. In the past 15 years, he has authored or co-authored more than 300 journal articles and 6 books. He has received several awards for his methodological developments and collaborative studies in clinical trials and genetic epidemiology. Andreas Ziegler is professor and head of the Institute of Medical Biometry and Statistics at the University of Lübeck (Germany).
The linear exponential family.- The quadratic exponential family.- Generalized linear models.- Maximum likelihood method.- Quasi maximum likelihood method.- Pseudo maximum likelihood method based on the linear exponential family.- Quasi generalized pseudo maximum likelihood method based on the linear exponential family.- Algorithms for solving the generalized estimating equations and the relation to the jack-knife estimator of variance.- Pseudo maximum likelihood estimation based on the quadratic exponential family.- Generalized method of moment estimation.
Erscheint lt. Verlag | 17.6.2011 |
---|---|
Reihe/Serie | Lecture Notes in Statistics | Lecture Notes in Statistics |
Zusatzinfo | XV, 144 p. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik | |
Schlagworte | biometrics • clustered data • Econometrics • generalized estimating equations • Generalized Linear Model • Generalized method of moments • maximum likelihood method • pseudo maximum likelihood method • Psychometrics |
ISBN-10 | 1-4614-0499-1 / 1461404991 |
ISBN-13 | 978-1-4614-0499-6 / 9781461404996 |
Haben Sie eine Frage zum Produkt? |
Größe: 1,9 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich