Introduction to Probability and Statistics for Engineers and Scientists -  Sheldon M. Ross

Introduction to Probability and Statistics for Engineers and Scientists (eBook)

eBook Download: PDF
2009 | 4. Auflage
680 Seiten
Elsevier Science (Verlag)
978-0-08-091937-9 (ISBN)
Systemvoraussetzungen
67,84 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This updated text provides a superior introduction to applied probability and statistics for engineering or science majors. Ross emphasizes the manner in which probability yields insight into statistical problems; ultimately resulting in an intuitive understanding of the statistical procedures most often used by practicing engineers and scientists. Real data sets are incorporated in a wide variety of exercises and examples throughout the book, and this emphasis on data motivates the probability coverage.
As with the previous editions, Ross' text has remendously clear exposition, plus real-data examples and exercises throughout the text. Numerous exercises, examples, and applications
apply probability theory to everyday statistical problems and situations.
Also Available: Student Solutions Manual for Introduction to Probability and Statistics for Engineers and Scientists, 4e ISBN:9780123705280
New to the 4th Edition:
- New Chapter on Simulation, Bootstrap Statistical Methods, and Permutation Tests
- 20% New Updated problem sets and applications, that demonstrate updated applications to engineering as well as biological, physical and computer science
- New Real data examples that use significant real data from actual studies across life science, engineering, computing and business
- New End of Chapter review material that emphasizes key ideas as well as the risks associated with practical application of the material

Sheldon M. Ross is a professor in the Department of Industrial Engineering and Operations Research at the University of Southern California. He received his Ph.D. in statistics at Stanford University in 1968. He has published many technical articles and textbooks in the areas of statistics and applied probability. Among his texts are A First Course in Probability, Introduction to Probability Models, Stochastic Processes, and Introductory Statistics. Professor Ross is the founding and continuing editor of the journal Probability in the Engineering and Informational Sciences. He is a Fellow of the Institute of Mathematical Statistics, and a recipient of the Humboldt US Senior Scientist Award.
This updated text provides a superior introduction to applied probability and statistics for engineering or science majors. Ross emphasizes the manner in which probability yields insight into statistical problems; ultimately resulting in an intuitive understanding of the statistical procedures most often used by practicing engineers and scientists. Real data sets are incorporated in a wide variety of exercises and examples throughout the book, and this emphasis on data motivates the probability coverage.As with the previous editions, Ross' text has remendously clear exposition, plus real-data examples and exercises throughout the text. Numerous exercises, examples, and applications apply probability theory to everyday statistical problems and situations. - New Chapter on Simulation, Bootstrap Statistical Methods, and Permutation Tests- 20% New Updated problem sets and applications, that demonstrate updated applications to engineering as well as biological, physical and computer science- New Real data examples that use significant real data from actual studies across life science, engineering, computing and business- New End of Chapter review material that emphasizes key ideas as well as the risks associated with practical application of the material

Front Cover 1
Introduction to Probability and Statistics for Engineers and Scientists 4
Copyright Page 5
Table of Contents 8
Preface 14
Chapter 1. Introduction to Statistics 18
1.1 Introduction 18
1.2 Data Collection and Descriptive Statistics 18
1.3 Inferential Statistics and Probability Models 19
1.4 Populations and Samples 20
1.5 A Brief History of Statistics 20
Problems 24
Chapter 2. Descriptive Statistics 26
2.1 Introduction 26
2.2 Describing Data Sets 26
2.2.1 Frequency Tables and Graphs 27
2.2.2 Relative Frequency Tables and Graphs 27
2.2.3 Grouped Data, Histograms, Ogives, and Stem and Leaf Plots 31
2.3 Summarizing Data Sets 34
2.3.1 Sample Mean, Sample Median, and Sample Mode 34
2.3.2 Sample Variance and Sample Standard Deviation 39
2.3.3 Sample Percentiles and Box Plots 41
2.4 Chebyshev’s Inequality 44
2.5 Normal Data Sets 48
2.6 Paired Data Sets and the Sample Correlation Coefficient 50
Problems 58
Chapter 3. Elements of Probability 72
3.1 Introduction 72
3.2 Sample Space and Events 73
3.3 Venn Diagrams and the Algebra of Events 75
3.4 Axioms of Probability 76
3.5 Sample Spaces Having Equally Likely Outcomes 78
3.6 Conditional Probability 84
3.7 Bayes’ Formula 87
3.8 Independent Events 93
Problems 97
Chapter 4. Random Variables and Expectation 106
4.1 Random Variables 106
4.2 Types of Random Variables 109
4.3 Jointly Distributed Random Variables 112
4.3.1 Independent Random Variables 118
*4.3.2 Conditional Distributions 122
4.4 Expectation 124
4.5 Properties of the Expected Value 128
4.5.1 Expected Value of Sums of Random Variables 132
4.6 Variance 135
4.7 Covariance and Variance of Sums of Random Variables 138
4.8 Moment Generating Functions 142
4.9 Chebyshev’s Inequality and the Weak Law of Large Numbers 144
Problems 147
Chapter 5. Special Random Variables 158
5.1 The Bernoulli and Binomial Random Variables 158
5.1.1 Computing the Binomial Distribution Function 164
5.2 The Poisson Random Variable 165
5.2.1 Computing the Poisson Distribution Function 172
5.3 The Hypergeometric Random Variable 173
5.4 The Uniform Random Variable 177
5.5 Normal Random Variables 185
5.6 Exponential Random Variables 193
*5.6.1 The Poisson Process 197
*5.7 The Gamma Distribution 200
5.8 Distributions Arising from the Normal 203
5.8.1 The Chi-Square Distribution 203
5.8.2 The t-Distribution 207
5.8.3 The F-Distribution 209
*5.9 The Logistics Distribution 210
Problems 212
Chapter 6. Distributions of Sampling Statistics 220
6.1 Introduction 220
6.2 The Sample Mean 221
6.3 The Central Limit Theorem 223
6.3.1 Approximate Distribution of the Sample Mean 229
6.3.2 How Large a Sample Is Needed? 231
6.4 The Sample Variance 232
6.5 Sampling Distributions from a Normal Population 233
6.5.1 Distribution of the Sample Mean 234
6.5.2 Joint Distribution of X and S2 234
6.6 Sampling from a Finite Population 236
Problems 240
Chapter 7. Parameter Estimation 248
7.1 Introduction 248
7.2 Maximum Likelihood Estimators 249
*7.2.1 Estimating Life Distributions 257
7.3 Interval Estimates 259
7.3.1 Confidence Interval for a Normal Mean When the Variance Is Unknown 265
7.3.2 Confidence Intervals for the Variance of a Normal Distribution 270
7.4 Estimating the Difference in Means of Two Normal Populations 272
7.5 Approximate Confidence Interval for the Mean of a Bernoulli Random Variable 279
*7.6 Confidence Interval of the Mean of the Exponential Distribution 284
*7.7 Evaluating a Point Estimator 285
*7.8 The Bayes Estimator 291
Problems 296
Chapter 8. Hypothesis Testing 310
8.1 Introduction 310
8.2 Significance Levels 311
8.3 Tests Concerning the Mean of a Normal Population 312
8.3.1 Case of Known Variance 312
8.3.2 Case of Unknown Variance: The t-Test 324
8.4 Testing the Equality of Means of Two Normal Populations 331
8.4.1 Case of Known Variances 331
8.4.2 Case of Unknown Variances 333
8.4.3 Case of Unknown and Unequal Variances 337
8.4.4 The Paired t-Test 338
8.5 Hypothesis Tests Concerning the Variance of a Normal Population 340
8.5.1 Testing for the Equality of Variances of Two Normal Populations 341
8.6 Hypothesis Tests in Bernoulli Populations 342
8.6.1 Testing the Equality of Parameters in Two Bernoulli Populations 346
8.7 Tests Concerning the Mean of a Poisson Distribution 349
8.7.1 Testing the Relationship Between Two Poisson Parameters 350
Problems 353
Chapter 9. Regression 370
9.1 Introduction 370
9.2 Least Squares Estimators of the Regression Parameters 372
9.3 Distribution of the Estimators 374
9.4 Statistical Inferences about the Regression Parameters 380
9.4.1 Inferences Concerning ß 381
9.4.2 Inferences Concerning a 389
9.4.3 Inferences Concerning the Mean Response a+ßx0 390
9.4.4 Prediction Interval of a Future Response 392
9.4.5 Summary of Distributional Results 394
9.5 The Coefficient of Determination and the Sample Correlation Coefficient 395
9.6 Analysis of Residuals: Assessing the Model 397
9.7 Transforming to Linearity 400
9.8 Weighted Least Squares 403
9.9 Polynomial Regression 410
*9.10 Multiple Linear Regression 413
9.10.1 Predicting Future Responses 424
9.11 Logistic Regression Models for Binary Output Data 429
Problems 432
Chapter 10. Analysis of Variance 458
10.1 Introduction 458
10.2 An Overview 459
10.3 One-Way Analysis of Variance 461
10.3.1 Multiple Comparisons of Sample Means 469
10.3.2 One-Way Analysis of Variance with Unequal Sample Sizes 471
10.4 Two-Factor Analysis of Variance:Introduction and Parameter Estimation 473
10.5 Two-Factor Analysis of Variance:Testing Hypotheses 477
10.6 Two-Way Analysis of Variance with Interaction 482
Problems 490
Chapter 11. Goodness of Fit Tests and Categorical Data Analysis 502
11.1 Introduction 502
11.2 Goodness of Fit Tests When All Parameters are Specified 503
11.2.1 Determining the Critical Region by Simulation 509
11.3 Goodness of Fit Tests When Some Parameters are Unspecified 512
11.4 Tests of Independence in Contingency Tables 514
11.5 Tests of Independence in Contingency Tables Having Fixed Marginal Totals 518
*11.6 The Kolmogorov–Smirnov Goodness of Fit Test for Continuous Data 523
Problems 527
Chapter 12. Nonparametric Hypothesis Tests 534
12.1 Introduction 534
12.2 The Sign Test 534
12.3 The Signed Rank Test 538
12.4 The Two-Sample Problem 544
*12.4.1 The Classical Approximation and Simulation 548
12.5 The Runs Test for Randomness 552
Problems 556
Chapter 13. Quality Control 564
13.1 Introduction 564
13.2 Control Charts for Average Values:The X-Control Chart 565
13.2.1 Case of Unknown µ and s 568
13.3 S-Control Charts 573
13.4 Control Charts for the Fraction Defective 576
13.5 Control Charts for Number of Defects 578
13.6 Other Control Charts for Detecting Changes in the Population Mean 582
13.6.1 Moving-Average Control Charts 582
13.6.2 Exponentially Weighted Moving-Average Control Charts 584
13.6.3 Cumulative Sum Control Charts 590
Problems 592
Chapter 14*. Life Testing 600
14.1 Introduction 600
14.2 Hazard Rate Functions 600
14.3 The Exponential Distribution in Life Testing 603
14.3.1 Simultaneous Testing — Stopping at the rth Failure 603
14.3.2 Sequential Testing 609
14.3.3 Simultaneous Testing — Stopping by a Fixed Time 613
14.3.4 The Bayesian Approach 615
14.4 A Two-Sample Problem 617
14.5 The Weibull Distribution in Life Testing 619
14.5.1 Parameter Estimation by Least Squares 621
Problems 623
Chapter 15. Simulation, Bootstrap Statistical Methods, and Permutation Tests 630
15.1 Introduction 630
15.2 Random Numbers 631
15.2.1 The Monte Carlo Simulation Approach 633
15.3 The Bootstrap Method 634
15.4 Permutation Tests 641
15.4.1 Normal Approximations in Permutation Tests 644
15.4.2 Two-Sample Permutation Tests 648
15.5 Generating Discrete Random Variables 649
15.6 Generating Continuous Random Variables 651
15.6.1 Generating a Normal Random Variable 653
15.7 Determining the Number of Simulation Runs in a Monte Carlo Study 654
Problems 655
Appendix of Tables 658
Index 664

Erscheint lt. Verlag 13.3.2009
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
ISBN-10 0-08-091937-5 / 0080919375
ISBN-13 978-0-08-091937-9 / 9780080919379
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Trigonometrie, Analytische Geometrie, Algebra, Wahrscheinlichkeit

von Walter Strampp

eBook Download (2024)
De Gruyter (Verlag)
94,95
Angewandte Analysis im Bachelorstudium

von Michael Knorrenschild

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99

von Siegfried Völkel; Horst Bach; Jürgen Schäfer …

eBook Download (2024)
Carl Hanser Verlag GmbH & Co. KG
34,99