Electronic, Atomic and Molecular Calculations -  Alberico da Silva,  Milan Trsic

Electronic, Atomic and Molecular Calculations (eBook)

Applying the Generator Coordinate Method
eBook Download: PDF | EPUB
2011 | 1. Auflage
320 Seiten
Elsevier Science (Verlag)
978-0-08-054708-4 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
205,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The Generator Coordinate Method (GCM) is a mathematical tool for the understanding of stable atomic nuclei. Electronic, Atomic and Molecular Calculations is designed to assist scientists applying GCM in the analysis of the electronic structure of atoms and molecules. There have been numerous publications covering nuclear physics and electronic structure of atoms and molecules, but this book is unique in the sense that it specifically addresses the application of GCM for such purposes. Using this book, researchers will be able to understand and calculate the electronic structure in a novel manner.

* Only book that covers the Generator Coordinate Method and applications for atoms, molecules and nuclei
* Clearly describes how the GCM can be used as a powerful tool for design of atomic basis sets
* Reviews current literature on GCM in atomic and molecular fields and a large part of the literature of the method in nuclear physics
The Generator Coordinate Method (GCM) is a mathematical tool for the understanding of stable atomic nuclei. Electronic, Atomic and Molecular Calculations is designed to assist scientists applying GCM in the analysis of the electronic structure of atoms and molecules. There have been numerous publications covering nuclear physics and electronic structure of atoms and molecules, but this book is unique in the sense that it specifically addresses the application of GCM for such purposes. Using this book, researchers will be able to understand and calculate the electronic structure in a novel manner.* Only book that covers the Generator Coordinate Method and applications for atoms, molecules and nuclei* Clearly describes how the GCM can be used as a powerful tool for design of atomic basis sets* Reviews current literature on GCM in atomic and molecular fields and a large part of the literature of the method in nuclear physics

Front cover 1
Electronic Atomic and Molecular Calculations 4
Copyright page 5
Dedication 6
Table of Contents 8
Preface 12
Acknowledgements 14
Chapter 1. Introduction 16
Chapter 2. The Generator Coordinate Method 18
1. Introduction 18
2. Background for the Formulation of the Method 18
3. Formulation of the Method 19
4. Applications in Nuclear Physics 20
5. Some Alternative Proposals to the Generator Coordinate Method 21
Chapter 3. Analytical and Numerical Experiments for Simple Systems 24
1. Introduction 24
2. Analytical Solutions for the Griffin–Hill–Wheeler Equation 24
3. Numerical Experiments for the Griffin–Hill–Wheeler Equation 29
Chapter 4. The Generator Coordinate Hartree–Fock Formalism 34
1. Introduction 34
2. The Background of the Hartree–Fock Scheme 34
3. The Generator Coordinate Hartree–Fock Method 36
4. Numerical Integration 37
5. First Applications to the He and Be Atoms 40
Chapter 5. Discretization Techniques 46
1. Introduction 46
2. A Model Problem: The Harmonic Oscillator 47
3. Discretization of the Griffin–Hill–Wheeler Equation for the Harmonic Oscillator Problem 49
4. The Integral Discretization 53
5. A New Proposal for the Discretization of the Griffin–Hill–Wheeler–Hartree–Fock Equations 61
Chapter 6. Role of the Weight Function in the Design of Efficient Basis Sets for Atomic and Molecular Nonrelativistic Calculations 70
1. Introduction 70
2. Weight Function and the Generation of Universal Basis Sets 71
3. Is the Generator Coordinate Weight Function a Distribution? 90
4. The Future of Generating Basis Sets for Atomic and Molecular Calculations Using the GCHF Method 91
Chapter 7. The Generator Coordinate Dirac–Fock Method and Relativistic Calculations for Atoms and Molecules 94
1. Introduction 94
2. The Generator Coordinate Dirac–Fock–Coulomb Formalism 95
3. The Generator Coordinate Dirac–Fock Method and the Generation of a Universal Gaussian Basis Set for the Relativistic Closed-Shell Atoms from Zinc to Nobelium 102
4. The Generator Coordinate Dirac–Fock Method and the Generation of a Relativistic Universal Gaussian Basis Set for Atoms from Hydrogen to Nobelium 108
5. The Generator Coordinate Dirac–Fock–Breit Formalism 123
6. A Polynomial Version of the Generator Coordinate Dirac–Fock Method 128
7. The Polynomial Version of the Generator Coordinate Dirac–Fock Method and the Generation of Relativistic Adapted Gaussian Basis Sets 134
Chapter 8. The Generator Coordinate Method and Connections with Natural Orbitals and Density Functional Theory 166
1. Introduction 166
2. Natural Orbitals 166
3. An Integral Transform View of Natural Orbitals 166
4. Density Functional Theory 171
5. First Applications of the Generator Coordinate Method to Density Functional Theory 172
Final Remarks and Perspectives 178
Appendix: Selected Universal and Atom-Adapted Slater and Gaussian Basis Sets for Atomic and Molecular Calculations 180
Appendix 1 182
Appendix 2 184
Appendix 3 186
Appendix 4 190
Appendix 5 194
Subject Index 314

Chapter 2

The Generator Coordinate Method


1 Introduction


The Hartree–Fock theory [1], at its limit, may provide about 98% of the energy of an atom or molecule. Still, we wish for better, not only in the search for testing Quantum Mechanics, but also because the “small” 2% error may have the magnitude of an ionization potential or an electronic transition.

Several alternatives are available if we endeavor to recover the missing portion of energy (correlation energy), such as many body perturbation theory (MBPT), density functional theory (DFT), and the variational configuration interaction (CI) method, often at the cost of nontrivial computational efforts.

Wheeler and collaborators [2], in the context of Nuclear Physics, showed in 1953–1957 that the limit in the variational procedure capacity itself was not reached. As we indicated in the Introduction (Chapter 1), the generator coordinate method (GCM) introduces an integral transform capable, in principle, of finding the best functional form for a given trial function through the Griffin–Hill–Wheeler (GHW) integral equation defined below.

2 Background for the Formulation of the Method


The GCM was introduced [2] in the field of Nuclear Physics. The proposition of Wheeler and collaborators was one of the first attempts to incorporate collective and single-particle nuclear motions into a single coherent quantum-mechanical formulation.

The α parameter, which plays an important role in the method, is initially introduced as a shape parameter of the nuclear liquid drop model, defining the size and shape of the drop.

Physics and chemistry have been interacting and feeding each other with questions and answers for centuries. However, the speed of interpenetration is variable. Thus, until the introduction of what we now call the generator coordinate Hartree–Fock (GCHF) method for atoms and molecules in 1986 [3] (see Chapter 4), the major part of the literature on the GCM dealt with the collective aspects of nuclei. It started with the classical paper of Hill and Wheeler [2a], which aimed at relating collective and single-particle aspects in the fission problem. The direct application to the bound state case was pioneered by Griffin and Wheeler [2b], who clearly recognized the GCM as a variational procedure. In Section 4 we review some of the literature in Nuclear Physics.

3 Formulation of the Method


Here, we shall follow closely the method presented by Griffin and Wheeler in 1957 [2b]. We search for a solution to the Schrödinger equation:

(x)?Ψ(x)=EΨ(x),

  (2.1)

where H is the Hamiltonian operator, Ψ the eigenfunction, E the energy of the system, and x represents the space and spin coordinates. Then, a trial function Φ (x; α) is chosen, where α represents one or several generator coordinates. The trial function Φ may be an approximate solution of Equation (2.1), or the exact solution of a problem similar to Equation (2.1), or some other function appropriate for the case. Next, the integral transform function is built:

(x)=∫d?αf(α)?Φ(x;?α),

  (2.2)

where f(α) is the weight function that needs to be determined. If the exact f(α) can be determined, then the integral transform in Equation (2.2) leads to the exact solution Ψ.

The energy functional E can now be written,

=∫dx?Ψ*(x)?H(x)?Ψ(x)/∫dx?Ψ*(x)?Ψ(x).

  (2.3)

The use of Equation (2.2) in Equation (2.3) gives

=∫f*(α)?H(α,?β)?f?(β)?dαdβ/f*(α)?S(α,β)?f(β)?dαd?β,

  (2.4)

with the energy H,β) and overlap S,β) kernels defined as:

(α,?β)=<Φ(x,α)|H|Φ(x,?β)>=∫dx?Φ*(x,?α)?H?Φ(x,β)

  (2.5)

and

(α,?β)=<Φ(x,α)|Φ(x,?β)>=∫dx?Φ*(x,?α)?Φ(x,β),

  (2.6)

respectively.

The generator wave function must now be chosen to make the integral an extreme value [see Equation (2.7)]:

=δE=∫dα?δf*?(α)?∫dβ?[H(α,?β)−ES(α,?β)]?f(β)+comp.conj.∫f*?(α)?S(α,?β)f(β)dα?dβ

  (2.7)

The coefficients of δf*(α) and δf*(α) must vanish separately, because these are two linearly independent variations. Thus, one arrives at the generator wave equation (often called GHW equation):

[H(α,?β)−ES(α,?β)]?f(β)dβ=0.

  (2.8)

The analytical solution of the GHW equation for many electron atoms and molecules (or many particle systems in general) is beyond present mathematical capabilities. Thus most applications have relied on either approximations, which is the case for nuclei, or discretization techniques, as in the case of atoms and molecules (see Chapter 5).

There seems to be only a few analytical solutions for the GCM, which we comment upon in the next chapter.

4 Applications in Nuclear Physics


Certainly the early and numerous applications of the GCM arose in the field of Nuclear Physics. From the very beginning, the Nuclear Physics community gave preference to the Gaussian overlap approximation (GOA) for the solution of the GHW equation.

In the GOA [4], the overlap kernel [Equation (2.6)] is replaced by a Gaussian function of the form

(α,?β)≅SGaussian?(α,?β)=exp{−12[α−βa(α¯)]},

  (2.9)

where the width α is often chosen as a function of the average of the GCM generator coordinate α¯?=(α+β)/2.

In the seventies, attempts were made to mobilize the GCM for the scattering problem of complex particles as an alternative to the resonating group method [5]. Considerable literature for the bound state has been reviewed by Klein [6], Villars [7], Brink [8], Mihailovich and Rosina [9], Wong [10], and, with specific emphasis on the scattering aspects, Giraud et al. [11]. We also refer to a conference held in Belgium in 1975 summarizing this topic [12].

More recent revisions may be found in the book by Ring and Schuck [13] and the review by Bender et al. [4].

5 Some Alternative Proposals to the Generator Coordinate Method


In 1968, Somorjai and, later, Somorjai and Bishop [14] introduced an integral transform method, closely related to GCM, for atomic and molecular systems. Somorjai was aware of the work of Wheeler and collaborators, but was critical of the use of Gaussian distributions for solving the integral equation.

The procedure to solve the integral transform employed by Somorjai and Bishop was to choose a definite form for the weight function and then to use the upper and lower integration limits as variational parameters. In his first work on the subject [14a], Somorjai employed Hulthen functions to represent 1s orbitals following a proposition by Parr and Wave [15]. The two-parameter Hulthen function, Fα β (r), has the form

αβ=r−1[e−αr−e−βr].

  (2.10)

The identity,

ɛβ(r)=r−1[e−αr−e−βr]=∫αβe−rxdx,

  (2.11)

shows that Fαβ is a linear combination of an infinite number of screened 1s functions, with orbital exponents ranging continuously in a variationally optimized interval [α, β]. Each 1s orbital has the same weight. Further, Somorjai rewrites the finite integral transform [Equation (2.10)] as a general Laplace transform

(r)=∫0∞f(x)?e−rxdx,

  (2.12)

thus recovering the form of the trial function of the GCM. In work to follow, Somorjai and other authors did not enter the GCM ansatz, but treated the function f(x) in Equation (2.12) as having adjustable parameters. An extensive review of this method was later organized by Bishop and Schneider [16]. Also, in this context, accurate correlated functions for two- and three-electron atomic systems were obtained by Thakkar and Smith [17].

While the former solutions were certainly original and innovative, they masked to some extent the full...

Erscheint lt. Verlag 30.8.2011
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Naturwissenschaften Chemie Physikalische Chemie
Naturwissenschaften Physik / Astronomie Atom- / Kern- / Molekularphysik
Naturwissenschaften Physik / Astronomie Elektrodynamik
Technik
ISBN-10 0-08-054708-7 / 0080547087
ISBN-13 978-0-08-054708-4 / 9780080547084
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 2,0 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 38,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Siegfried Völkel; Horst Bach; Jürgen Schäfer …

eBook Download (2024)
Carl Hanser Fachbuchverlag
34,99
Angewandte Analysis im Bachelorstudium

von Michael Knorrenschild

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99