Handbook of MRI Pulse Sequences -  Matt A. Bernstein,  Kevin F. King,  Xiaohong Joe Zhou

Handbook of MRI Pulse Sequences (eBook)

eBook Download: PDF | EPUB
2004 | 1. Auflage
1040 Seiten
Elsevier Science (Verlag)
978-0-08-053312-4 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
155,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This indispensable guide gives concise yet comprehensive descriptions of the pulse sequences commonly used on modern MRI scanners. The book consists of a total of 65 self-contained sections, each focused on a single subject. Written primarily for scientists, engineers, radiologists, and graduate students who are interested in an in-depth understanding of various MRI pulse sequences, it serves readers with a diverse set of backgrounds by providing both non-mathematical and mathematical descriptions.

The book is divided into five parts. Part I of the book describes two mathematical tools, Fourier transforms and the rotating reference frame, that are useful for understanding MRI pulse sequences. The second part is devoted to a wide variety of radiofrequency (RF) pulses, and the third part focuses on gradient waveforms. Data acquisition, image reconstruction, and physiological monitoring related to pulse sequence design form the subject of Part IV of the book. Once this foundation is established, Part V of the book describes the underlying principles, implementation, and selected applications of many pulse sequences commonly in use today.

The extensive topic coverage and cross-referencing makes this book ideal for beginners learning the building blocks of MRI pulse sequence design, as well as for experienced professionals who are seeking deeper knowledge of a particular technique.

?Explains pulse sequences, their components, and the associated image reconstruction methods commonly used in MRI
?Provides self-contained sections for individual techniques
?Can be used as a quick reference guide or as a resource for deeper study
?Includes both non-mathematical and mathematical descriptions
?Contains numerous figures, tables, references, and worked example problems
Magnetic Resonance Imaging (MRI) is among the most important medical imaging techniques available today. There is an installed base of approximately 15,000 MRI scanners worldwide. Each of these scanners is capable of running many different "e;pulse sequences"e;, which are governed by physics and engineering principles, and implemented by software programs that control the MRI hardware. To utilize an MRI scanner to the fullest extent, a conceptual understanding of its pulse sequences is crucial. Handbook of MRI Pulse Sequences offers a complete guide that can help the scientists, engineers, clinicians, and technologists in the field of MRI understand and better employ their scanner. Explains pulse sequences, their components, and the associated image reconstruction methods commonly used in MRI Provides self-contained sections for individual techniques Can be used as a quick reference guide or as a resource for deeper study Includes both non-mathematical and mathematical descriptions Contains numerous figures, tables, references, and worked example problems

Front Cover 1
Handbook of MRI Pulse Sequences 4
Copyright Page 5
Contents 8
Forewords 16
Preface 18
PART I: Background 24
Introduction 26
Chapter 1. Tools 28
1.1 Fourier Transforms 28
1.2 Rotating Reference Frame 44
PART II: Radiofrequency Pulses 52
Introduction 54
Chapter 2. Radiofrequency Pulse Shapes 58
2.1 Rectangular Pulses 58
2.2 SINC Pulses 60
2.3 SLR Pulses 66
2.4 Variable-Rate Pulses 81
Chapter 3. Basic Radiofrequency Pulse Functions 90
3.1 Excitation Pulses 90
3.2 Inversion Pulses 100
3.3 Refocusing Pulses 107
Chapter 4. Spectral Radiofrequency Pulses 119
4.1 Composite Radiofrequency Pulses 119
4.2 Magnetization Transfer Pulses 126
4.3 Spectrally Selective Pulses 138
Chapter 5. Spatical Radiofrequency Pulses 148
5.1 Multidimensional Pulses 148
5.2 Ramp (TONE) Pulses 161
5.3 Spatial Saturation Pulses 171
5.4 Spatial-Spectral Pulses 176
5.5 Tagging Pulses 187
Chapter 6. Adiabatic Radiofrequency Pulses 200
6.1 Adiabatic Excitation Pulses 200
6.2 Adiabatic Inversion Pulses 212
6.3 Adiabatic Refocusing Pulses 223
PART III: Gradients 236
Introduction 238
Chapter 7. Gradient Lobe Shapes 242
7.1 Simple Gradient Lobes 242
7.2 Bridged Gradient Lobes 245
7.3 Gradients for Oblique Acquisitions 251
Chapter 8. Imaging Gradients 266
8.1 Frequency-Encoding Gradients 266
8.2 Phase-Encoding Gradients 279
8.3 Slice Selection Gradients 289
Chapter 9. Motion-Sensitizing Gradients 297
9.1 Diffusion-Weighting Gradients 297
9.2 Flow-Encoding Gradients 304
Chapter 10. Correction Gradients 315
10.1 Concomitant-Field Correction Gradients 315
10.2 Crusher Gradients 328
10.3 Eddy-Current Compensation 339
10.4 Gradient Moment Nulling 354
10.5 Spoiler Gradients 372
10.6 Twister (Projection Dephaser) Gradients 380
PART IV: Data Acquisition k-space Sampling,and Image Reconstruction 386
Introduction 388
Chapter ll. Signal Acquisition and k-Space Sampling 390
11.1 Bandwidth and Sampling 390
11.2 k-Space 401
11.3 Keyhole, BRISK, and TRICKS 406
11.4 Real-Time Imaging 417
11.5 Two-Dimensional Acquisition 428
11.6 Three-Dimensional Acquisition 447
Chapter 12. Basic of Physiologic Gating Triggering,and Monitoring 466
12.1 Cardiac Triggering 466
12.2 Navigators 477
12.3 Respiratory Gating and Compensation 496
Chapter 13. Common Image Reconstruction Techiques 514
13.1 Fourier Reconstruction 514
13.2 Gridding Reconstruction 529
13.3 Parallel-Imaging Reconstruction 545
13.4 Partial Fourier Reconstruction 569
13.5 Phase Difference Reconstruction 581
13.6 View Sharing 590
PART V: Pulse Sequences 596
Introduction 598
Chapter 14. Basic Pulse Sequences 602
14.1 Gradient Echo 602
14.2 Inversion Recovery 629
14.3 Radiofrequency Spin Echo 653
Chapter 15. Angiographic Pulse Sequences 671
15.1 Black Blood Angiography 671
15.2 Phase Contrast 682
15.3 TOF and CEMRA 701
Chapter 16. Echo Train Pulse Sequences 725
16.1 Echo Planar Imaging 725
16.2 GRASE 763
16.3 PRESTO 786
16.4 RARE 797
Chapter 17. Advanced Pulse Sequence Techniques 825
17.1 Arterial Spin Tagging 825
17.2 Diffusion Imaging 853
17.3 Dixon's Method 880
17.4 Driven Equilibrium 911
17.5 Projection Acquisition 920
17.6 Spiral 951
Appendix I: Table of Symbols 978
Appendix II: Table of Constants and Conversion Factors 983
Appendix III: Common Abbreviations 986
Index 988

CHAPTER 1 TOOLS

1.1 Fourier Transforms


The Fourier transform (FT) is a mathematical operation that yields the spectral content of a signal (Bracewell 1978). It is named after the French mathematician Jean Baptiste Joseph Fourier (1768–1830). If a signal consists of oscillation at a single frequency (e.g., 163 Hz), then its FT will contain a peak at that frequency (Figure 1.1a). If the signal contains a superposition of tones at multiple frequencies, the FT operation essentially provides a histogram of that spectral content (Figure 1.1b). For example, consider the following physical analogy. Suppose several keys on a piano are struck simultaneously and the resultant sounds are sampled and digitized. The FT of that signal will provide information about which keys were struck and with what force.

FIGURE 1.1 Schematic representations of the Fourier transform. (a) If a time domain signal contains a tone at a single frequency, its Fourier transform will contain a peak at that frequency, which in this case is 163 Hz. (b) If the signal contains a superposition of two tones, the Fourier transform displays a second peak. In the case shown, a 15-Hz tone with approximately one-quarter the amplitude is modulating the original tone.

Fourier transforms are ubiquitous in the practical reconstruction of MR data and also in the theoretical analysis of MR processes. This is because the physical evolution of the transverse magnetization is described very naturally by the FT. In Magnetic Resonance Imaging (MRI), we usually use complex Fourier transforms, which employ the complex exponential, rather than separate sine or cosine Fourier transforms. This choice is made because a complex exponential conveniently represents the precession of the magnetization vector. Table 1.1 reviews some basic properties of the complex exponential. Often a magnitude operation (i.e., |Z|) is used on a pixel-by-pixel basis to convert the complex output of the FT to positive real numbers that can be more conveniently displayed as pixel intensities.

TABLE 1.1 Properties of Complex Numbers

When we are provided with a function of a continuous variable, its FT is calculated by a process that includes integration. This continuous FT is widely used for theoretical work in MRI. The actual MRI signal that is measured, however, is sampled at a finite number of discrete time points, so instead a discrete Fourier transform (DFT) is used for practical image reconstruction. With the DFT, the integration operation of the FT is replaced by a finite summation. An important special case of the DFT is called the fast Fourier transform (FFT) (Cooley and Tukey 1965; Brigham 1988). The FFT is an algorithm that calculates the DFT of signals whose lengths are particular values (most typically equal to a power of 2, e.g., 256 = 28). As its name implies, the FFT is computationally faster than the standard DFT.

1.1.1 THE CONTINUOUS FOURIER TRANSFORM AND ITS INVERSE


Let g(x) be a function of the real variable x. The output of the function g(x) can have complex values. The complex Fourier transform of g(x) is another function, which we call G(k):


     (1.1)


The two real variables x and k are known as Fourier conjugates and represent a pair of FT domains. Examples of domain pairs commonly used in MR are (time, frequency) and (distance, k-space). If the physical units of the pair of variables that represent the two domains are multiplied together, the result is always dimensionless. For example, with the time-frequency pair, the product:


     (1.2)


The two functions g(x) and G(k) in Eq. (1.1) are called Fourier transform pairs. Knowledge about one of the pair is sufficient to reconstruct the other. If G(k) is known, then g(x) can be recovered by performing an inverse Fourier transform (IFT):


     (1.3)


The IFT undoes the effect of the FT, that is:


     (1.4)


and vice versa:


     (1.5)


Note that the right sides of Eqs. (1.4) and (1.5) are simply g(x) and G(k), respectively, and are not multiplied by any scaling factors. This is because the IFT definition in Eq. (1.3) is properly normalized. A further discussion of the normalization is given in subsection 1.1.10.

Note the factor of that appears in the argument of the exponentials in Eqs. (1.1) and (1.3). If instead domain variables such as time and angular frequency (ω, measured in radians/second) are used, then the form of the FT appears somewhat differently. The FT and its inverse become:


     (1.6)


Note the absence of the 2π factor in the exponential in Eq. (1.6) and the extra multiplicative normalization factor in front of the FT. Equation (1.6) could be recast into a more symmetric form by splitting the into equal factors in the denominators of both the FT and IFT definitions. Alternatively, we can recast Eq. (1.6) by making the familiar substitution from angular frequency ω to standard frequency f (measured in cycles/second or hertz):


     (1.7)


Substituting Eq. (1.7) into Eq. (1.6) yields the symmetric FT pairs


     (1.8)


and


     (1.9)


In this book, we mainly use the form of the FT and IFT with the factor of in the exponential, such as Eqs. (1.1) and (1.8).

1.1.2 MULTIDIMENSIONAL FOURIER TRANSFORMS, AND SEPARABILITY


Multidimensional FTs often arise in MRI. For example, the two-dimensional FT (2D-FT) of a function of two variables can be defined as:


     (1.10)


where and are vectors. The inverse 2D-FT is given by:


     (1.11)


Eqs. (1.10) and (1.11) are readily generalized to three or more dimensions.

If the function g is separable in x and y:


     (1.12)


then the FT is also separable:


     (1.13)


An example of a separable two-dimensional function is the Gaussian:


     (1.14)


In contrast,


     (1.15)


is not separable.

1.1.3 PROPERTIES OF THE FOURIER TRANSFORM


An important property of the FT is the shift theorem. A shift or offset of the coordinate in one domain results in a multiplication of the signal by a linear phase ramp in the other domain, and vice versa:


     (1.16)


A second useful property of the FT is that convolution in one domain is equivalent to simple multiplication in the other. If f(x) and g(x) are two functions, then convolution is defined as:


     (1.17)


and


     (1.18)


Parseval’s theorem (named after Marc-Antoine Parseval des Chêsnes, 1755–1836, a French mathematician) is a third commonly used property of the FT. It states that if f and g are two functions with Fourier transforms F and G, respectively, then


     (1.19)


where * denotes complex conjugation. Letting g = f in Eq. (1.19) results in a useful special case, which shows that the FT operation conserves normalization:


     (1.20)


Table 1.2 provides several 1D-FT pairs that are commonly used in MRI. These relationships can be applied to multidimensional FTs if the variables are separable.

TABLE 1.2 Fourier Transform Pairs Commonly Used in Magnetic Resonance Imaging

1.1.4 THE DISCRETE FOURIER TRANSFORM AND ITS INVERSE


In MRI, the sampling process provides a finite number (e.g., 256) of complex data points, rather than a function of a continuous variable. Consequently, the MR image is normally reconstructed with a DFT. Given a string of N complex data...

PDFPDF (Adobe DRM)
Größe: 45,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 20,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen, Experimentaldesign und Datenanalyse

von Stefan Pollmann; Tömme Noesselt

eBook Download (2024)
Springer (Verlag)
26,99