Combinatorial Set Theory: Partition Relations for Cardinals (eBook)
348 Seiten
Elsevier Science (Verlag)
978-0-444-53745-4 (ISBN)
This work presents the most important combinatorial ideas in partition calculus and discusses ordinary partition relations for cardinals without the assumption of the generalized continuum hypothesis. A separate section of the book describes the main partition symbols scattered in the literature. A chapter on the applications of the combinatorial methods in partition calculus includes a section on topology with Arhangel'skii's famous result that a first countable compact Hausdorff space has cardinality, at most continuum. Several sections on set mappings are included as well as an account of recent inequalities for cardinal powers that were obtained in the wake of Silver's breakthrough result saying that the continuum hypothesis can not first fail at a singular cardinal of uncountable cofinality.
Front Cover 1
Combinatorial Set Theory: Partition Relations for Cardinals 4
Copyright Page 5
Contents 8
Preface 6
Chapter I. Introduction 10
1. Notation and basic concepts 10
2. The axioms of Zermelo–Fraenkel set theory 14
3. Ordinals cardinals, and order types 17
4. Basic tools of set theory 22
Chapter II. Preliminaries 35
5. Stationary sets 35
6. Equalities and inequalities for cardinals 40
7. The logarithm operation 46
Chapter III. Fundamentals about partition relations 53
8. A guide to partition symbols 53
9. Elementary properties of the ordinary partition symbol 63
10. Ramsey’s theorem 66
11. The Erdös–Dushnik–Miller theorem 71
12. Negative relations with infinite superscripts 79
Chapter IV. Trees and positive ordinary partition relations 81
13.Trees 81
14. Tree arguments 83
15. End-homogeneous sets 87
16. The Stepping-up Lemma 91
17. The main results in case r = 2 and k is regular and some corollaries for r G 3
18. A direct construction of the canonical partition tree 101
Chapter V. Negative ordinary partition relations, and the discussion of the finite case 106
19. Multiplication of negative partition relations for r = 2 106
20. A negative partition relation established with the aid of GCH 111
21. Addition of negative partition relations for r =2 114
22. Addition of negative partition relations for r G 3 118
23. Multiplication of negative partition relations in case r G 3 123
24. The Negative Stepping-up Lemma 133
25. Some special negative partition relations for r G 3 139
26. The finite case of the ordinary partition relation 146
Chapter VI. The canonization lemmas 159
27. Shelah's canonization 159
28. The General Canonization Lemma 164
Chapter VII. Large cardinals 169
29. The ordinary partition relation for inaccessible cardinals 169
30. Weak compactness and a metamathematical approach to the Hanf–Tarski result 178
31. Baumgartner's principle 189
32. A combinatorial approach to the Hanf-Tarski result 195
33. Hanf's iteration scheme 201
34. Saturated ideals, measurable cardinals. and strong partition relations 202
Chapter VIII. Discussion of the ordinary partition relation with superscript 2 216
35. Discussion of the ordinary partition symbol in case r = 2 216
36. Discussion of the ordinary partition relation in case r=2 under the assumption of GCH 227
37. Sierpinski partitions 230
Chapter IX. Discussion of the ordinary partition relation with superscript G 3 234
38. Reduction of the superscript 234
39. Applicability of the Reduction Theorem 241
40. Consequences of the Reduction Theorem 244
41. The main result for the case r G 3 254
42. The main result for the case r G 3 with GCH 260
Chapter X. Some applications of combinatorial metbods 264
43. Applications in topology 264
44. Fodor's and Hajnal's set-mapping theorems 273
45. Set mapping of type > 1
46. Finite free sets with respect to set mappings of type > 1
47. Inequalities for powers of singular cardinals 289
48. Cardinal exponentiation and saturated ideals 302
Chapter XI. A brief survey of the square bracket relation 314
49. Negative square bracket relations and the GCH 314
50. The effect of a Suslin tree on negative relations 319
51. The Kurepa Hypothesis and negative stepping up to superscript 3 322
52. Aronszajn trees and Specker types (preparations for results without GCH) 325
53. Negative square bracket relations without GCH 328
54. Positive relations for singular strong limit cardinals 331
55. Infinitary Jónsson algebras 333
Bibliography 336
Author index 342
Subject index 344
Erscheint lt. Verlag | 18.8.2011 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
Mathematik / Informatik ► Mathematik ► Finanz- / Wirtschaftsmathematik | |
Mathematik / Informatik ► Mathematik ► Graphentheorie | |
Mathematik / Informatik ► Mathematik ► Logik / Mengenlehre | |
Technik | |
ISBN-10 | 0-444-53745-7 / 0444537457 |
ISBN-13 | 978-0-444-53745-4 / 9780444537454 |
Haben Sie eine Frage zum Produkt? |
Größe: 14,3 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich