Dielectric Materials for Wireless Communication -  Mailadil T. Sebastian

Dielectric Materials for Wireless Communication (eBook)

eBook Download: PDF | EPUB
2010 | 1. Auflage
688 Seiten
Elsevier Science (Verlag)
978-0-08-056050-2 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
180,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Microwave dielectric materials play a key role in our global society with a wide range of applications, from terrestrial and satellite communication including software radio, GPS, and DBS TV to environmental monitoring via satellite.
A small ceramic component made from a dielectric material is fundamental to the operation of filters and oscillators in several microwave systems. In microwave communications, dielectric resonator filters are used to discriminate between wanted and unwanted signal frequencies in the transmitted and received signal. When the wanted frequency is extracted and detected, it is necessary to maintain a strong signal. For clarity it is also critical that the wanted signal frequencies are not affected by seasonal temperature changes. In order to meet the specifications of current and future systems, improved or new microwave components based on dedicated dielectric materials and new designs are required. The recent progress in microwave telecommunication, satellite broadcasting and intelligent transport systems (ITS) has resulted in an increased demand for Dielectric Resonators (DRs). With the recent revolution in mobile phone and satellite communication systems using microwaves as the propagation media, the research and development in the field of device miniaturization has been a major challenge in contemporary Materials Science. In a mobile phone communication, the message is sent from a phone to the nearest base station, and then on via a series of base stations to the other phone. At the heart of each base station is the combiner/filter unit which has the job of receiving the messages, keeping them separate, amplifying the signals and sending then onto the next base station. For such a microwave circuit to work, part of it needs to resonate at the specific working frequency. The frequency determining component (resonator) used in such a high frequency device must satisfy certain criteria. The three important characteristics required for a dielectric resonator are (a) a high dielectric constant which facilitates miniaturization (b) a high quality factor (Qxf) which improves the signal-to-noise ratio, (c) a low temperature coefficient of the resonant frequency which determines the stability of the transmitted frequency.
During the past 25 years scientists the world over have developed a large number of new materials (about 3000) or improved the properties of known materials. About 5000 papers have been published and more than 1000 patents filed in the area of dielectric resonators and related technologies. This book brings the data and science of these several useful materials together, which will be of immense benefit to researchers and engineers the world over.
The topics covered in the book includes factors affecting the dielectric properties, measurement of dielectric properties, important low loss dielectric material systems such as perovskites, tungsten bronze type materials, materials in BaO-TiO2 system, (Zr,Sn)TiO4, alumina, rutile, AnBn-1O3n type materials, LTCC, ceramic-polymer composites etc. The book also has a data table listing all reported low loss dielectric materials with properties and references arranged in the order of increasing dielectric constant.

Key Features:
- collects together in one source data on all new materials used in wireless communication
- includes tabulated properties of all reported low loss dielectric materials
- in-depth treatment of dielectric resonator materials
Microwave dielectric materials play a key role in our global society with a wide range of applications, from terrestrial and satellite communication including software radio, GPS, and DBS TV to environmental monitoring via satellite. A small ceramic component made from a dielectric material is fundamental to the operation of filters and oscillators in several microwave systems. In microwave communications, dielectric resonator filters are used to discriminate between wanted and unwanted signal frequencies in the transmitted and received signal. When the wanted frequency is extracted and detected, it is necessary to maintain a strong signal. For clarity it is also critical that the wanted signal frequencies are not affected by seasonal temperature changes. In order to meet the specifications of current and future systems, improved or new microwave components based on dedicated dielectric materials and new designs are required. The recent progress in microwave telecommunication, satellite broadcasting and intelligent transport systems (ITS) has resulted in an increased demand for Dielectric Resonators (DRs). With the recent revolution in mobile phone and satellite communication systems using microwaves as the propagation media, the research and development in the field of device miniaturization has been a major challenge in contemporary Materials Science. In a mobile phone communication, the message is sent from a phone to the nearest base station, and then on via a series of base stations to the other phone. At the heart of each base station is the combiner/filter unit which has the job of receiving the messages, keeping them separate, amplifying the signals and sending then onto the next base station. For such a microwave circuit to work, part of it needs to resonate at the specific working frequency. The frequency determining component (resonator) used in such a high frequency device must satisfy certain criteria. The three important characteristics required for a dielectric resonator are (a) a high dielectric constant which facilitates miniaturization (b) a high quality factor (Qxf) which improves the signal-to-noise ratio, (c) a low temperature coefficient of the resonant frequency which determines the stability of the transmitted frequency. During the past 25 years scientists the world over have developed a large number of new materials (about 3000) or improved the properties of known materials. About 5000 papers have been published and more than 1000 patents filed in the area of dielectric resonators and related technologies. This book brings the data and science of these several useful materials together, which will be of immense benefit to researchers and engineers the world over. The topics covered in the book includes factors affecting the dielectric properties, measurement of dielectric properties, important low loss dielectric material systems such as perovskites, tungsten bronze type materials, materials in BaO-TiO2 system, (Zr,Sn)TiO4, alumina, rutile, AnBn-1O3n type materials, LTCC, ceramic-polymer composites etc. The book also has a data table listing all reported low loss dielectric materials with properties and references arranged in the order of increasing dielectric constant. Collects together in one source data on all new materials used in wireless communication Includes tabulated properties of all reported low loss dielectric materials In-depth treatment of dielectric resonator materials

Front Cover 1
Dielectric Materials For Wireless Communication 4
Copyright Page 5
Table of Contents 6
Foreword 12
Acknowledgment 14
Chapter 1 Introduction 16
References 25
Chapter 2 Measurement of Microwave Dielectric Properties and Factors Affecting them 26
2.1 Permittivity (?r) 26
2.2 Quality Factor (Q) 27
2.3 Measurement of Microwave Dielectric Properties 31
2.3.1 Hakki and Coleman (Courtney) method 31
2.3.2 TE01? mode dielectric resonator method 36
2.3.3 Measurement of quality factor by stripline excited by cavity method 39
2.3.4 Whispering gallery mode resonators 42
2.3.5 Split post dielectric resonator 43
2.3.6 Cavity perturbation method 44
2.3.7 TM0n0 mode and re-entrant cavity method 46
2.3.8 TE01n mode cavities 46
2.4 Estimation of Dielectric Loss by Spectroscopic Methods 48
2.5 Factors Affecting Dielectric Losses 52
2.6 Correction for Porosity 54
2.7 Calculation of Permittivity using Clausius Mossotti Equation 54
2.8 Measurement of Temperature Coefficient of Resonant Frequency (?f) 56
2.9 Tuning the Resonant Frequency 57
References 58
Chapter 3 Microwave Dielectric Materials in the BaO–TiO2 System 64
3.1 Introduction 64
3.2 BaTi4O9 65
3.2.1 Microwave dielectric properties 67
3.3 BaTi5O11 74
3.4 Ba2Ti9O20 77
3.4.1 Preparation 78
3.4.2 Structure 81
3.4.3 Properties 82
3.5 BaTi4O9/Ba2Ti9O20 Composites 87
3.6 Conclusion 91
References 92
Chapter 4 Zirconium Tin Titanate 98
4.1 Introduction 98
4.2 Preparation 98
4.2.1 Solid state method 98
4.2.2 Wet chemical methods 99
4.3 Crystal Structure and Phase Transformation 101
4.4 Microwave Dielectric Properties 107
4.5 Conclusion 117
References 119
Chapter 5 Pseudo-Tungsten Bronze-Type Dielectric Materials 124
5.1 Introduction 124
5.2 Crystal Structure 124
5.3 Preparation of Ba6–3xLn8+2xTi18O54 129
5.4 Dielectric Properties 130
5.4.1 Effect of dopants 150
5.4.2 Substitution for Ba 154
5.4.3 Substitution for Ti 160
5.4.4 Texturing 161
5.4.5 Effect of glass 163
5.5 Phase Transition 164
5.6 Conclusions 166
References 167
Chapter 6 ABO3 Type Perovskites 176
6.1 Introduction 176
6.2 Tolerance Factor (t) and Perovskite Cell Parameter (ap) 177
6.3 ATiO3 (A = Ba, Sr,Ca) 179
6.4 Ag(Nb1–xTax)O3 195
6.5 Ca(Li1/3Nb2/3)O3–? 196
6.6 CaO–Ln2O3–TiO2–Li2O System 199
6.7 LnAlO3 205
6.8 Conclusions 211
References 211
Chapter 7 A(B?1/2B?1/2)O3 [A = A2+ or A3+ B?= B2+,B3+
7.1 Introduction 220
7.2 Ba(B?1/2Nb1/2)O3 Ceramics 221
7.3 Ba(B?1/2Ta1/2)O3 237
7.4 Sr(B?1/2Nb1/2)O3 240
7.4.1 Tailoring of ?f in Sr(B?1/2Nb1/2)O3 ceramics 244
7.5 Sr(B?1/2Ta1/2)O3 245
7.5.1 Effect of non-stoichiometry on the dielectric properties of Sr(B?0.5Ta0.5)O3 ceramics 247
7.5.2 Effect of A- and B-site substitutions 249
7.5.3 Effect of rutile addition 251
7.6 Ca(B?1/2Nb1/2)O3 252
7.6.1 Tailoring the properties of Ca(B?1/2Nb1/2)O3 by addition of TiO2 and CaTiO3 255
7.6.2 Effect of A- and B-site substitution on the structure and dielectric properties 257
7.7 Ca(B?1/2Ta1/2)O3 [B?= Lanthanides, Y and In] System 261
7.8 (Pb1–xCax)(Fe1/2B?1/2)O3 [B?= Nb, Ta] 263
7.9 Ln(A1/2Ti1/2)O3 [Ln = Lanthanide, A = Zn, Mg, Co] 265
7.10 Conclusions 266
References 267
Chapter 8 A(B?1/3B?2/3)O3 Complex Perovskites 276
8.1 Introduction 276
8.2 Ba(Zn1/3Ta2/3)O3 [BZT] 279
8.2.1 Preparation 279
8.2.2 Crystal structure and ordering 281
8.2.3 Dielectric Properties 287
8.2.4 Effect of BaZrO3 addition in BZT 292
8.3 Ba(Mg1/3Ta2/3)O3 (BMT) 298
8.3.1 Preparation 298
8.3.2 Crystal structure and ordering 301
8.3.3 Properties 305
8.3.4 Effect of dopants 311
8.3.5 Effect of glass addition 315
8.3.6 Non-stoichiometry 316
8.3.7 Dielectric properties at low temperatures 317
8.4 BaSr(Mg1/3Ta2/3)O3 319
8.5 Ba(Zn1/3Nb2/3)O3 (BZN) 323
8.5.1 Preparation 323
8.5.2 Dielectric properties 323
8.6 Ba(Ni1/3Nb2/3)O3 333
8.7 Ba(Co1/3Nb2/3)O3 333
8.8 Ba(Mg1/3Nb2/3)O3 334
8.9 Conclusion 335
References 336
Chapter 9 Cation-Deficient Perovskites 350
9.1 Introduction 350
9.2 A4B3O12 Ceramics 350
9.3 A5B4O15 351
9.4 A6B5O18 366
9.5 A8B7O24 367
9.6 La2/3(Mg1/2W1/2)O3 368
9.7 Conclusions 371
References 371
Chapter 10 Ca(Ca1/4B2/4Ti1/4)O3 (B = Nb, Ta) Complex Perovskites 376
10.1 Introduction 376
10.2 Structure and Properties of Ca5B2TiO12 [B = Nb, Ta] 376
10.3 Effect of Dopant Addition in Ca5B2TiO12 (B = Nb, Ta) Ceramics 379
10.4 Effect of Glass Addition 380
10.5 Effect of Cationic Substitutions at A and B Sites of Ca5B2TiO12 Ceramics (B = Nb, Ta) 381
10.6 Conclusions 387
References 391
Chapter 11 Alumina, Titania, Ceria, Silicate, Tungstate and Other Materials 394
11.1 Alumina 394
11.2 Titania 401
11.3 CeO2 404
11.4 Silicates 410
11.5 Spinel 413
11.6 Tungstates 417
11.7 AB2O6 (A = Zn, Co, Ni, Sr, Ca, Mg, B = Nb, Ta) 417
11.8 A4M2O9 (M = Mg, Mn, Fe, Co A = Ta, Nb)
11.9 Ln2BaAO5 (Ln = Rare Earth A = Cu, Zn, Mg)
11.10 LnTiAO6 (A = Nb, Ta) 434
11.11 MgTiO3 440
11.12 ZnO–TiO2 System 441
11.13 Conclusions 443
References 447
Chapter 12 Low Temperature Cofired Ceramics 460
12.1 Introduction 460
12.2 Materials Selection and Requirements 461
12.3 The Important Characteristics Required for the Glass-Ceramic Composites 463
12.3.1 Low densification temperature 463
12.3.2 Permittivity in the range 4–100 464
12.3.3 Quality factor (Qf ) > 1000 GHz
12.3.4 Temperature stability of dielectric properties 465
12.3.5 High thermal conductivity 466
12.3.6 Thermal expansion 466
12.3.7 Chemical compatibility with electrode material 466
12.4 Commercial LTCC Materials 467
12.5 Glass-Ceramic Composites 467
12.6 Microwave Dielectric Properties of Glasses 480
12.7 LTCC Materials and Their Properties 483
12.7.1 Alumina 483
12.7.2 TiO2-based LTCC 485
12.7.3 Li2O–M2O5–TiO2 system (M = Nb, Ta) 487
12.7.4 Bismuth based compounds 487
12.7.5 TeO2 type 493
12.7.6 ZnO–TiO2 system 495
12.7.7 MgAl2O4 and ZnAl2O4 497
12.7.8 Tungsten bronze type LTCC ceramics 498
12.7.9 Pb1–xCax(Fe1/2,Nb1/2)O3 499
12.7.10 Ca(Li1/3B2/3)O3-? (B = Nb,Ta) 499
12.7.11 BaO–TiO2-system 500
12.7.12 Vanadate system 501
12.7.13 Zinc and barium niobates 503
12.7.14 (Mg, Ca)TiO3 504
12.7.15 Mg4(Nb/Ta)2O9 507
12.7.16 Ba(Mg1/3Nb2/3)O3 507
12.7.17 (Zr,Sn)TiO4 system 507
12.7.18 Ag(NbTa)O3 ceramics 508
12.7.19 A2P2O7 (A = Ca, Sr, Ba, Zn, Mg, Mn) 509
12.7.20 ABO4 (A = Ca, Sr, Ba, Mg, Mn, Zn: B = Mo, W) 510
12.8 Conclusion 511
References 511
Chapter 13 Tailoring the Properties of Low-Loss Dielectrics 528
13.1 Introduction 528
13.2 Solid Solution Formation 528
13.3 Use of Additives 529
13.4 Nonstoichiometry 530
13.5 Stacked Resonators 530
13.6 Tailoring the Properties by Mixture Formation 533
References 536
Chapter 14 Conclusion 540
References 544
Appendix 1 546
Ionic Radius 546
Appendix 2 556
List of Microwave Dielectric Resonator Materials and Their Properties 556
Dielectric Properties of Single Crystals 631
Index 668
Color Plates 688

Erscheint lt. Verlag 7.7.2010
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Naturwissenschaften Chemie
Naturwissenschaften Physik / Astronomie Elektrodynamik
Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Technik Nachrichtentechnik
ISBN-10 0-08-056050-4 / 0080560504
ISBN-13 978-0-08-056050-2 / 9780080560502
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 9,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 22,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Theoretische Physik II

von Peter Reineker; Michael Schulz; Beatrix M. Schulz …

eBook Download (2022)
Wiley-VCH GmbH (Verlag)
48,99
Theoretische Physik II

von Peter Reineker; Michael Schulz; Beatrix M. Schulz …

eBook Download (2022)
Wiley-VCH GmbH (Verlag)
48,99