Correlated Data Analysis: Modeling, Analytics, and Applications (eBook)
XVI, 352 Seiten
Springer New York (Verlag)
978-0-387-71393-9 (ISBN)
This book covers recent developments in correlated data analysis. It utilizes the class of dispersion models as marginal components in the formulation of joint models for correlated data. This enables the book to cover a broader range of data types than the traditional generalized linear models. The reader is provided with a systematic treatment for the topic of estimating functions, and both generalized estimating equations (GEE) and quadratic inference functions (QIF) are studied as special cases. In addition to the discussions on marginal models and mixed-effects models, this book covers new topics on joint regression analysis based on Gaussian copulas.
Thisbook,likemanyotherbooks,wasdeliveredundertremendousinspiration and encouragement from my teachers, research collaborators, and students. My interest in longitudinal data analysis began with a short course taught jointly by K. Y. Liang and S. L. Zeger at the Statistical Society of Canada Conference in Acadia University, Nova Scotia, in the spring of 1993. At that time, I was a ?rst-year PhD student in the Department of Statistics at the University of British Columbia, and was eagerly seeking potential topics for my PhD dissertation. It was my curiosity (driven largely by my terrible c- fusion) with the generalized estimating equations (GEEs) introduced in the short course that attracted me to the ?eld of correlated data analysis. I hope that my experience in learning about it has enabled me to make this book an enjoyable intellectual journey for new researchers entering the ?eld. Thus, the book aims at graduate students and methodology researchers in stat- tics or biostatistics who are interested in learning the theory and methods of correlated data analysis. I have attempted to give a systematic account of regression models and their applications to the modeling and analysis of correlated data. Longitu- nal data, as an important type of correlated data, has been used as a main venue for motivation, methodological development, and illustration throu- out the book. Given the many applied books on longitudinal data analysis - ready available, this book is inclined more towards technical details regarding the underlying theory and methodology used in software-based applications.
Preface 7
Contents 11
1 Introduction and Examples 16
1.1 Correlated Data 16
1.2 Longitudinal Data Analysis 17
1.3 Data Examples 21
1.4 Remarks 34
1.5 Outline of Subsequent Chapters 35
2 Dispersion Models 37
2.1 Introduction 37
2.2 Dispersion Models 39
2.3 Exponential Dispersion Models 44
2.4 Residuals 49
2.5 Tweedie Class 50
2.6 Maximum Likelihood Estimation 51
3 Inference Functions 68
3.1 Introduction 68
3.2 Quasi-Likelihood Inference in GLMs 69
3.3 Preliminaries 71
3.4 Optimal Inference Functions 74
3.5 Multi-Dimensional Inference Functions 78
3.6 Generalized Method of Moments 81
4 Modeling Correlated Data 85
4.1 Introduction 85
4.2 Quasi-Likelihood Approach 88
4.3 Conditional Modeling Approaches 92
4.4 Joint Modeling Approach 96
5 Marginal Generalized Linear Models 98
5.1 Model Formulation 99
5.2 GEE: Generalized Estimating Equations 100
5.3 GEE2 106
5.4 Residual Analysis 112
5.5 Quadratic Inference Functions 114
5.6 Implementation and Softwares 117
5.7 Examples 120
6 Vector Generalized Linear Models 132
6.1 Introduction 132
6.2 Log-Linear Model for Correlated Binary Data 133
6.3 Multivariate ED Family Distributions 136
6.4 Simultaneous Maximum Likelihood Inference 147
6.5 Algorithms 152
6.6 An Illustration: VGLMs for Trivariate Discrete Data 157
6.7 Data Examples 161
7 Mixed-Effects Models: Likelihood-Based Inference 167
7.1 Introduction 167
7.2 Model Specification 171
7.3 Estimation 175
7.4 MLE Based on Numerical Integration 177
7.5 Simulated MLE 184
7.6 Conditional Likelihood Estimation 186
7.7 MLE Based on EM Algorithm 188
7.8 Approximate Inference: PQL and REML 192
7.9 SAS Software 202
8 Mixed-Effects Models: Bayesian Inference 205
8.1 Bayesian Inference Using MCMC Algorithm 205
8.2 An Illustration: Multiple Sclerosis Trial Data 213
8.3 Multi-Level Correlated Data 216
8.4 WinBUGS Software 222
9 Linear Predictors 226
9.1 General Results 226
9.2 Estimation of Random Effects in GLMMs 230
9.3 Kalman Filter and Smoother 231
10 Generalized State Space Models 236
10.1 Introduction 236
10.2 Linear State Space Models 240
10.3 Shift-Mean Model 241
10.4 Monte Carlo Maximum Likelihood Estimation 244
11 Generalized State Space Models for Longitudinal Binomial Data 247
11.1 Introduction 247
11.2 Monte Carlo Kalman Filter and Smoother 248
11.3 Bayesian Inference Based on MCMC 254
12 Generalized State Space Models for Longitudinal Count Data 269
12.1 Introduction 269
12.2 Generalized Estimating Equation 272
12.3 Monte Carlo EM Algorithm 273
12.4 KEE in Stationary State Processes 275
12.5 KEE in Non-Stationary State Processes 283
13 Missing Data in Longitudinal Studies 299
13.1 Introduction 299
13.2 Missing Data Patterns 301
13.3 Diagnosis of Missing Data Types 308
13.4 Handling MAR Mechanism 314
13.5 Handling NMAR Mechanism 328
References 337
Index 351
Erscheint lt. Verlag | 30.6.2007 |
---|---|
Reihe/Serie | Springer Series in Statistics | Springer Series in Statistics |
Zusatzinfo | XVI, 352 p. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik | |
Schlagworte | Copula • Data Analysis • dispersion model • estimating function • Generalized Linear Model • likelihood • longitudinal data • Regression Analysis • Sage • State Space Model • Time Series |
ISBN-10 | 0-387-71393-X / 038771393X |
ISBN-13 | 978-0-387-71393-9 / 9780387713939 |
Haben Sie eine Frage zum Produkt? |
Größe: 7,0 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich