Adaptive Cooperation between Driver and Assistant System (eBook)

Improving Road Safety
eBook Download: PDF
2007 | 2008
XIII, 225 Seiten
Springer Berlin (Verlag)
978-3-540-74474-0 (ISBN)

Lese- und Medienproben

Adaptive Cooperation between Driver and Assistant System - Frédéric Holzmann
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

One of the next challenges in vehicular technology field is to improve drastically the road safety. Current developments are focusing on both vehicle platform and diverse assistance systems. This book presents a new engineering approach based on lean vehicle architecture ready for the drive-by-wire technology.

Based on a cognitive functionality split, execution and command levels are detailed. The execution level centralized over the stability control performs the motion vector coming from the command level. At this level the driver generates a motion vector which is continuously monitored by a virtual co-pilot. The integration of assistance systems in a safety relevant multi-agent system is presented here to provide first an adequate feedback to the driver to let him recover a dangerous situation. Robust strategies are also presented for the intervention phase once the command vehicle has to be optimized to stay within the safety envelope.

Content 7
Part I New concept of cooperation 12
Needs of improved assistant systems 13
Analysis of the cause of accidents on the road 13
Autonomous vehicles as possible solution 15
Ways for improving the driving safety 16
Improvement of the infrastructures 17
Improvement of the driver capacities 17
Improvement of the vehicles 17
Introduction of assistant systems and inherent problems 18
Current integration of assistant systems 18
New issues coming from assistant systems 19
Behavioral changes with the human supervision 19
Risks of complacency 19
Problem statement and improvements with SPARC 20
Adaptive cooperation between driver and assistant system 21
Vehicle architecture matching the driver cognition flow 21
Horizontal layering integrated into the vehicle 24
Overall presentation of the new concept 25
Presentation of the concept of adaptive cooperation 26
Part II Executive level as vehicle platform 30
Requirements for the executive level 31
Tasks of the executive level 31
Integration of the predictive vehicle dynamics model 32
Selection of methodology for the prediction of the vehicle dynamics 32
Integration of the predictive vehicle dynamics model 32
Road--tire friction coefficient estimation 35
Analysis of the current methodologies 35
Predictive camera-based measurement 36
Extraction of the ranges analysis 38
Statistical approach 38
Macroscopic approach 41
Local microphone-based measurement 48
Measuring the loud-speaker effect of the tire 48
Frequencies extraction from the collected data 49
Construction of models 51
Matching of the measures 53
Local control of the predictive measures 55
Pros and cons of the estimation methodology 56
Actuators and drive train architecture 58
Migration strategy to a full safe drive-by-wire platform 58
Drive train architecture 61
Electrical integration with mechanical back-up 62
Electrical replication 64
Vehicle dynamics model 66
Modeling of the actuators 66
Modeling the dynamics of a unit with a second-order transfer function 66
Non-iterative identification of the dynamics of units with continuous state 67
Identification of the dynamics of the retarder 69
Iterative identification of the gear and clutch dynamical model 69
Non-iterative identification of the differential model 74
Limitation due to electrical power 75
Model of maximal available energy 76
Optimizing the energy capacity 76
Modifying the command to adapt it to the energy level 77
Pre-compensation of the physical limitations 78
Dynamics model 79
Computation of the propulsive forces 80
Computation of the vehicle dynamics 81
Use of the dynamics model 82
Performing the vehicle command 84
Command range 84
Inverse computation of the actuators' command 86
Possible extension to a predictive command execution by use of transfer functions 87
Reactive optimization of the command 88
Longitudinal correction 88
Yaw rate correction with electronic stability control 91
Part III Virtual driver for the cooperation 95
Extended middleware for fault-tolerant architecture 96
Concept of software redundancy with a multi-agent system 96
System management layer 98
Agent-based runtime environment 98
Use of a blackboard to provide information 100
Redundant management of the agents 102
Integration of fail-tolerant agents 108
Structure of an agent 108
Redundant computation 109
Agents derived from the robotic field 112
Potential field approach 112
Rejection forces 112
Lane keeping 114
Temporary destination setting 114
Resulting acceleration 114
Resulting problem 115
Modified dynamic window 116
Road monitoring 117
Object monitoring 118
Fusion of the two sub-modules 120
Tactic agent for speedway/highway 122
Fusion of reactive and anticipatory action 122
Environment categorization 123
Choice of the longitudinal and lateral controllers 125
Longitudinal controllers 126
Safety acceleration for the front direction 126
Distance control for the front direction 127
Lateral controllers 128
Safety range for the lane keeping 128
Extreme lane keeping assistant for other lanes 134
Safety distance for the lane changing 134
Anticipatory action to prevent inappropriate speed 64
Computation of the maximal safe speed 137
Extension to multiple paths 140
Part IV Adaptive cooperation 145
Methodology of a fault-tolerant adaptive cooperation 146
Drawbacks of current emergency brake 146
Concept of the adaptive cooperation 147
Functionalities degradation by use of recovery blocks 149
Understanding the driver maneuver 152
A priori choices by looking at the history 152
Weighting the choices with the command dynamics 154
Auto-adaptive detection 156
Analysis of the probabilistic graph of the maneuver detection 156
Updating the history 157
Determination of the driver drowsiness 158
Driver and his/her condition 158
Direct non-obtrusive measurement of the drowsiness 159
Methodology 159
Problem of reliability 160
Combination of multiple indirect measures 161
Simulation of test drives 161
From measures to indicators 163
Setting up of drowsiness references 165
Combination of the drowsiness indicators 166
Following the drowsiness evolution 167
Cooperation at the command level 170
Binary intervention 170
Concept of intervention 170
Meshing algorithm 171
Computation of the path transition 174
Transition control 176
Critical analysis 177
Fuzzy control 178
System confidence value 178
Adaptive weighting 179
Critical analysis 180
Adaptive cooperation 180
Concept of accepted dangerousness 181
Extension by use of the accepteddangerousness 181
Goal-based substitution process 184
Event-triggered intervention process 184
Fusion of both processes 186
Results and analysis 187
Feedback management for the driver and the virtual driver 188
Analogy to the delphi method 188
Detection of partial and full conflict situations 189
Feedback to the driver 191
Generation of a feedback for the driver 191
Different used channels 193
Feedback dispatching 194
Feedback to the virtual driver 197
Check of conflict due to lane detection 197
Check of conflict due to road-user detection 199
Critics on the new feedback extensions 206
Part V Discussion on the proposed concept 207
Concept summary and overview of the functionalities 208
Needs to help the driver in his/her task 208
New vehicle architecture concept 208
Creation of an extended executive level 209
Integration of a virtual driver 211
Concept of adaptive cooperation 212
Results and next steps 214
General conclusion 215
References 217
Index 225

Erscheint lt. Verlag 3.12.2007
Zusatzinfo XIII, 225 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik Elektrotechnik / Energietechnik
Technik Fahrzeugbau / Schiffbau
Technik Maschinenbau
Schlagworte Actuator • Antriebsstrang • Architecture • Autonomous Vehicles • Driver Assistant Systems • multi-agent system • platform • proving • Road Safety • robot • Safety • Vehicle Safety • Virtual Driver
ISBN-10 3-540-74474-6 / 3540744746
ISBN-13 978-3-540-74474-0 / 9783540744740
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
17,43