Fibonacci's De Practica Geometrie (eBook)

(Autor)

eBook Download: PDF
2007 | 2008
XXXVI, 412 Seiten
Springer New York (Verlag)
978-0-387-72931-2 (ISBN)

Lese- und Medienproben

Fibonacci's De Practica Geometrie - Barnabas Hughes
Systemvoraussetzungen
139,09 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Leonardo da Pisa, perhaps better known as Fibonacci (ca. 1170 - ca. 1240), selected the most useful parts of Greco-Arabic geometry for the book known as De Practica Geometrie. This translation offers a reconstruction of De Practica Geometrie as the author judges Fibonacci wrote it, thereby correcting inaccuracies found in numerous modern histories. It is a high quality translation with supplemental text to explain text that has been more freely translated. A bibliography of primary and secondary resources follows the translation, completed by an index of names and special words.


Leonardo da Pisa, perhaps better known as Fibonacci (ca. 1170 - ca. 1240), selected the most useful parts of Greco-Arabic geometry for the book known as De practica geometrie. Beginning with the definitions and constructions found early on in Euclid's Elements, Fibonacci instructed his reader how to compute with Pisan units of measure, find square and cube roots, determine dimensions of both rectilinear and curved surfaces and solids, work with tables for indirect measurement, and perhaps finally fire the imagination of builders with analyses of pentagons and decagons. His work exceeded what readers would expect for the topic. Practical Geometry is the name of the craft for medieval landmeasurers, otherwise known as surveyors in modern times. Fibonacci wrote De practica geometrie for these artisans, a fitting complement to Liber abbaci. He had been at work on the geometry project for some time when a friend encouraged him to complete the task, which he did, going beyond the merely practical, as he remarked, "e;Some parts are presented according to geometric demonstrations, other parts in dimensions after a lay fashion, with which they wish to engage according to the more common practice."e;This translation offers a reconstruction of De practica geometrie as the author judges Fibonacci wrote it. In order to appreciate what Fibonacci created, the author considers his command of Arabic, his schooling, and the resources available to him. To these are added the authors own views on translation and remarks about prior Italian translations. A bibliography of primary and secondary resources follows the translation, completed by an index of names and special words.

Foreword 7
Preface 9
Table of Contents 11
Notation 15
Background 16
FIBONACCI’S KNOWLEDGE OF ARABIC 17
FIBONACCI’S SCHOOLING 20
FIBONACCI’S BASIC RESOURCES 21
LIST OF PROBABLE SOURCES 23
SOURCES FOR THE ENGLISH TRANSLATION 25
THE TRANSLATION 27
ITALIAN TRANSLATIONS 29
INTRODUCTORY MATERIAL 30
CONCLUSION 33
Prologue and Introduction 35
COMMENTARY 35
SOURCES 37
PROLOGUE AND INTRODUCTION 38
INTRODUCTORY MATERIAL 39
1 Measuring Areas of Rectangular Fields 44
COMMENTARY 44
SOURCES 46
TEXT 47
METHOD 2 59
2 Finding Roots of Numbers 67
COMMENTARY 67
TEXT 70
3 Measuring All Kinds of Fields 89
COMMENTARY 89
SOURCES 95
TEXT 97
4 Dividing Fields Among Partners 212
COMMENTARY 212
SOURCE 215
TEXT 216
5 Finding Cube Roots 285
COMMENTARY 285
SOURCES 288
TEXT 289
6 Finding Dimensions of Bodies 305
COMMENTARY 305
SOURCES 307
TEXT 307
7 Measuring Heights, Depths, and Longitude of Planets 373
COMMENTARY 373
SOURCE 375
TEXT 376
8 Geometric Subtleties 390
COMMENTARY 390
SOURCES 392
TEXT 394
Appendix Indeterminate Problems with Several Answers 424
COMMENTARY 424
SOURCE 424
TEXT 425
Bibliography 428
Index of Proper Names and Terms 436

Erscheint lt. Verlag 15.12.2007
Reihe/Serie Sources and Studies in the History of Mathematics and Physical Sciences
Sources and Studies in the History of Mathematics and Physical Sciences
Zusatzinfo XXXVI, 412 p. 416 illus.
Verlagsort New York
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Allgemeines / Lexika
Mathematik / Informatik Mathematik Geometrie / Topologie
Mathematik / Informatik Mathematik Geschichte der Mathematik
Technik
Schlagworte area • Boundary element method • Construction • DEX • Division • Euclid • Fitting • Geometrie • Geometry • measure • PROLOG • Time
ISBN-10 0-387-72931-3 / 0387729313
ISBN-13 978-0-387-72931-2 / 9780387729312
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 8,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich