Genetic Programming Theory and Practice VIII (eBook)

eBook Download: PDF
2010 | 2011
XXVIII, 248 Seiten
Springer New York (Verlag)
978-1-4419-7747-2 (ISBN)

Lese- und Medienproben

Genetic Programming Theory and Practice VIII -
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The contributions in this volume are written by the foremost international researchers and practitioners in the GP arena. They examine the similarities and differences between theoretical and empirical results on real-world problems. The text explores the synergy between theory and practice, producing a comprehensive view of the state of the art in GP application.

Topics include: FINCH: A System for Evolving Java, Practical Autoconstructive Evolution, The Rubik Cube and GP Temporal Sequence Learning, Ensemble classifiers: AdaBoost and Orthogonal Evolution of Teams, Self-modifying Cartesian GP, Abstract Expression Grammar Symbolic Regression, Age-Fitness Pareto Optimization, Scalable Symbolic Regression by Continuous Evolution, Symbolic Density Models, GP Transforms in Linear Regression Situations, Protein Interactions in a Computational Evolution System, Composition of Music and Financial Strategies via GP, and Evolutionary Art Using Summed Multi-Objective Ranks.

Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results in GP .


The contributions in this volume are written by the foremost international researchers and practitioners in the GP arena. They examine the similarities and differences between theoretical and empirical results on real-world problems. The text explores the synergy between theory and practice, producing a comprehensive view of the state of the art in GP application.Topics include: FINCH: A System for Evolving Java, Practical Autoconstructive Evolution, The Rubik Cube and GP Temporal Sequence Learning, Ensemble classifiers: AdaBoost and Orthogonal Evolution of Teams, Self-modifying Cartesian GP, Abstract Expression Grammar Symbolic Regression, Age-Fitness Pareto Optimization, Scalable Symbolic Regression by Continuous Evolution, Symbolic Density Models, GP Transforms in Linear Regression Situations, Protein Interactions in a Computational Evolution System, Composition of Music and Financial Strategies via GP, and Evolutionary Art Using Summed Multi-Objective Ranks.Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results in GP .

FINCH: A System for Evolving Java (Bytecode).- Towards Practical Autoconstructive Evolution: Self-Evolution of Problem-Solving Genetic Programming Systems.- The Rubik Cube and GP Temporal Sequence Learning: An Initial Study.- Ensemble Classifiers: AdaBoost and Orthogonal Evolution of Teams.- Covariant Tarpeian Method for Bloat Control in Genetic Programming.- A Survey of Self Modifying Cartesian Genetic Programming.- Abstract Expression Grammar Symbolic Regression.- Age-Fitness Pareto Optimization.- Scalable Symbolic Regression by Continuous Evolution with Very Small Populations.- Symbolic Density Models of One-in-a-Billion Statistical Tails via Importance Sampling and Genetic Programming.- Genetic Programming Transforms in Linear Regression Situations.- Exploiting Expert Knowledge of Protein-Protein Interactions in a Computational Evolution System for Detecting Epistasis.- Composition of Music and Financial Strategies via Genetic Programming.- Evolutionary Art Using Summed Multi-Objective Ranks.

Erscheint lt. Verlag 20.10.2010
Reihe/Serie Genetic and Evolutionary Computation
Genetic and Evolutionary Computation
Zusatzinfo XXVIII, 248 p.
Verlagsort New York
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Algorithm analysis and problem complexity • Evolution of Models • genetic programming • Genetic Programming Applications • Genetic Programming Theory • Symbolic Regression
ISBN-10 1-4419-7747-3 / 1441977473
ISBN-13 978-1-4419-7747-2 / 9781441977472
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Build memory-efficient cross-platform applications using .NET Core

von Trevoir Williams

eBook Download (2024)
Packt Publishing (Verlag)
29,99
Learn asynchronous programming by building working examples of …

von Carl Fredrik Samson

eBook Download (2024)
Packt Publishing Limited (Verlag)
29,99