The Basic Theory of Power Series - Jesús M. Ruiz

The Basic Theory of Power Series

(Autor)

Buch | Softcover
X, 134 Seiten
1993 | 1993
Vieweg & Teubner (Verlag)
978-3-528-06525-6 (ISBN)
85,59 inkl. MwSt
The aim of these notes is to cover the basic algebraic tools and results behind the scenes in the foundations of Real and Complex Analytic Geometry. The author has learned the subject through the works of many mathematicians, to all of whom he is indebted. However, as the reader will immediately realize, he was specially influenced by the writings of S.S. Abhyankar and J .-C. Tougeron. In any case, the presentation of all topics is always as elementary as it can possibly be, even at the cost of making some arguments longer. The background formally assumed consists of: 1) Polynomials: roots, factorization, discriminant; real roots, Sturm's Theorem, formally real fields; finite field extensions, Primitive Element Theorem. 2) Ideals and modules: prime and maximal ideals; Nakayama's Lemma; localiza tion. 3) Integral dependence: finite ring extensions and going-up. 4) Noetherian rings: primary decomposition, associated primes, Krull's Theorem. 5) Krull dimension: chains of prime ideals, systems of parameters; regular systems of parameters, regular rings. These topics are covered in most texts on Algebra and/or Commutative Algebra. Among them we choose here as general reference the following two: - M. Atiyah, I.G. Macdonald: Introduction to Commutative Algebra, 1969, Addison-Wesley: Massachusetts; quoted [A-McD] . - S. Lang: Algebra, 1965, Addison-Wesley: Massachusetts; quoted [L].

Dr. Jésus M. Ruiz ist Professor für Mathematik am Institut für Geometrie und Topologie an der Universität Complutense de Madrid.

I Power Series.- 1 Series of Real and Complex Numbers.- 2 Power Series.- 3 Rückert's and Weierstrass's Theorems.- II Analytic Rings and Formal Rings.- 1 Mather's Preparation Theorem.- 2 Noether's Projection Lemma.- 3 Abhyankar's and Rückert's Parametrization.- 4 Nagata's Jacobian Criteria.- 5 Complexification.- III Normalization.- 1 Integral Closures.- 2 Normalization.- 3 Multiplicity in Dimension 1.- 4 Newton-Puiseux's Theorem.- IV Nullstellensatze.- 1 Zero Sets and Zero Ideals.- 2 Rückert's Complex Nullstellensatz.- 3 The Homomorphism Theorem.- 4 Risler's Real Nullstellensatz.- 5 Hilbert's 17th Problem.- V Approximation Theory.- 1 Tougeron's Implicit Functions Theorem.- 2 Equivalence of Power Series.- 3 M. Artin's Approximation Theorem.- 4 Formal Completion of Analytic Rings.- 5 Nash Rings.- VI Local Algebraic Rings.- 1 Local Algebraic Rings.- 2 Chevalley's Theorem.- 3 Zariski's Main Theorem.- 4 Normalization and Completion.- 5 Efroymson's Theorem.- Bibliographical Note.

Erscheint lt. Verlag 1.1.1993
Reihe/Serie Advanced Lectures in Mathematics
Zusatzinfo X, 134 p.
Verlagsort Wiesbaden
Sprache englisch
Maße 162 x 229 mm
Gewicht 260 g
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte Analytische Geometrie • HC/Mathematik/Geometrie • Potenz (mathemat.)
ISBN-10 3-528-06525-7 / 3528065257
ISBN-13 978-3-528-06525-6 / 9783528065256
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
61,00
Nielsen Methods, Covering Spaces, and Hyperbolic Groups

von Benjamin Fine; Anja Moldenhauer; Gerhard Rosenberger …

Buch | Softcover (2024)
De Gruyter (Verlag)
109,95