Discrete Groups, Expanding Graphs and Invariant Measures. Modern Birkhäuser Classics -  Alex Lubotzky

Discrete Groups, Expanding Graphs and Invariant Measures. Modern Birkhäuser Classics (eBook)

Appendix by Jonathan D. Rogawski
eBook Download: PDF
2009 | 1. Auflage
XI, 201 Seiten
Birkhäuser Basel (Verlag)
978-3-0346-0332-4 (ISBN)
Systemvoraussetzungen
37,40 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The book presents the solutions to two problems: the first is the construction of expanding graphs - graphs which are of fundamental importance for communication networks and computer science, the second is the Ruziewicz problem concerning the finitely additive invariant measures on spheres. Both problems were partially solved using the Kazhdan property (T) from representation theory of semi-simple Lie groups. Later, complete soultions were obtained for both problems using the Ramanujan conjecture from analytic number theory. The author, who played an important role in these developments, explains the two problems and their solutions from a perspective which reveals why all these seemingly unrelated topics are so interconnected. The unified approach shows interrelations between different branches of mathematics such as graph theory, measure theory, Riemannian geometry, discrete subgroups of Lie groups, representation theory and analytic number theory. Special efforts were made to make the book accessible to graduate students in mathematics and computer science. A number of problems and suggestions for further research are presented. Reviews: "This exciting book marks the genesis of a new field. It is a field in which one passes back and forth at will through the looking glass dividing the discrete from the continuous. (...) The book is a charming combination of topics from group theory (finite and infinite), combinatorics, number theory, harmonic analysis." - Zentralblatt MATH "The Appendix, written by J. Rogawski, explains the Jacquet-Langlands theory and indicates Deligne`s proof of the Petersson-Ramanujan conjecture. It would merit its own review. (...) In conclusion, this is a wonderful way of transmitting recent mathematical research directly "from the producer to the consumer." - MathSciNet "The book is accessible to mature graduate students in mathematics and theoretical computer science. It is a nice presentation of a gem at the border of analysis, geometry, algebra and combinatorics. Those who take the effort to glance what happens behind the scene won`t regret it." - Acta Scientiarum Mathematicarum TOC:0 Introduction. - 1 Expanding graphs. - 2 The Banach-Ruziewicz problem. - 3 Kazhdan Property (T) and its applications. - 4 The Laplacian and its eigenvalues. - 5 The representation theory of PGL2. - 6 Spectral decomposition of L2(G(Q)G(A)). - 7 Banach-Ruziewicz problem for n = 2, 3, Ramanujan graphs. - 8 Some more discrete mathematics. - 9 Distributing points on the sphere. - 10 Open problems. - Appendix. - References. - Index.

Table of Contents 
6 
Introduction 10
1 Expanding Graphs 
13 
1.0 Introduction 
13 
1.1 Expanders and their applications 
13 
1.2 Existence of expanders 
17 
2 The Banach-Ruziewicz Problem 
19 
2.0 Introduction 
19 
2.1 The Hausdorff-Banach-Tarski paradox 
19 
2.2 Invariant Measures 
25 
2.3 Notes 
30 
3 Kazhdan Property (T) and its Applications 
31 
3.0 Introduction 
31 
3.1 Kazhdan property (T) for semi-simple groups 
31 
3.2 Lattices and arithmetic subgroups 
39 
3.3 Explicit construction of expanders using property (T) 
42 
3.4 Solution of the Ruziewicz problem for Sn, n = 4 
46 
3.5 Notes 
51 
4 The Laplacian and its Eigenvalues 
53 
4.0 Introduction 
53 
4.1 The geometric Laplacian 
53 
4.2 The combinatorial Laplacian 
56 
4.3 Eigenvalues, isoperimetric inequalities and representations 
61 
4.4 Selberg Theorem .1 = 3/ 
64 
4.5 Random walks on k-regular graphs Ramanujan graphs
67 
4.6 Notes 
71 
5 The Representation Theory of PGL2 73
5.0 Introduction 73
5.1 Representations and spherical functions 74
5.2 Irreducible representations of PSL2 (R) and eigenvalues of the Laplacian 
77 
5.3 The tree associated with PGL2 (Qp) 
80 
5.4 Irreducible representations of PGL2(Qp) and eigenvalues of the Hecke operator 
82 
5.5 Spectral decomposition of G/G 84
6 Spectral Decomposition of L²(G(Q)/G(A )) 
89 
6.0 Introduction 89
6.1 Deligne’s Theorem adèlic formulation
89 
6.2 Quaternion algebras and groups 91
6.3 The Strong Approximation Theorem and its applications 93
6.4 Notes 95
7 Banach-Ruziewicz Problem for n = 2, 3 Ramanujan Graphs
97 
7.0 Introduction 97
7.1 The spectral decomposition of G'(Z[1/p])/G'(R) × G'(Qp) 
98 
7.2 The Banach-Ruziewicz problem for n = 2, 3 98
7.3 Ramanujan graphs and their extremal properties 100
7.4 Explicit constructions 106
7.5 Notes 111
8 Some More Discrete Mathematics 113
8.0 Introduction 113
8.2 Characters and eigenvalues of finite groups 118
8.3 Some more Ramanujan graphs (of unbounded degrees) 124
8.4 Ramanujan Diagrams 127
9 Distributing Points on the Sphere 131
9.0 Introduction 131
9.1 Hecke operators of group action 131
9.2 Distributing points on S² (and S³) 
133 
10 Open Problems 136
10.1 Expanding graphs 136
10.2 The Banach-Ruziewicz Problem 136
10.3 Kazhdan Property (T) and its applications 137
10.4 The Laplacian and its eigenvalues 139
10.5 The representation theory of PGL2 140
10.6 Spectral decomposition of L²(G(Q) / G(A)) 
140 
10.7 Banach-Ruziewicz problem for n = 2, 3 Ramanujan graphs
10.8 Some more discrete mathematics 142
10.9 Distributing points on the sphere 144
Appendix: Modular forms, the Ramanujan conjecture and the Jacquet-Langlands 
145 
A.0 Preliminaries 146
A.1 Representation theory and modular forms 149
A.2 Classification of unitary representations 159
A.3 Quaternion algebras 169
A.4 The Selberg trace formula 174
References to the Appendix 184
References 186

Erscheint lt. Verlag 1.1.2009
Mitarbeit Anhang von: Jonathan D. Rogawski
Sprache englisch
Original-Titel 978-3-7643-5075-8 (PM 125)
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Geometrie / Topologie
Mathematik / Informatik Mathematik Statistik
Technik
Schlagworte cls • combinatorics • Graphs • graph theory • group theory • Kazhdan property • Lie groups • measure theory • Network • Number Theory • Ramanujan conjecture • Representation Theory • Riemannian Geometry • Ruziewicz problem
ISBN-10 3-0346-0332-0 / 3034603320
ISBN-13 978-3-0346-0332-4 / 9783034603324
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 1,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich