K-Theory (eBook)

An Introduction

(Autor)

eBook Download: PDF
2009 | 2008
XVIII, 316 Seiten
Springer Berlin (Verlag)
978-3-540-79890-3 (ISBN)

Lese- und Medienproben

K-Theory - Max Karoubi
Systemvoraussetzungen
58,84 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
From the Preface: K-theory was introduced by A. Grothendieck in his formulation of the Riemann- Roch theorem. For each projective algebraic variety, Grothendieck constructed a group from the category of coherent algebraic sheaves, and showed that it had many nice properties. Atiyah and Hirzebruch  con­sidered a topological analog defined for any compact space X, a group K{X) constructed from the category of vector bundles on X. It is this ''topological K-theory' that this book will study. 
Topological K-theory has become an important tool in topology. Using K- theory, Adams and Atiyah were able to give a simple proof that the only spheres which can be provided with H-space structures are S1, S3 and S7. Moreover, it is possible to derive a substantial part of stable homotopy theory from K-theory.

The purpose of this book is to provide advanced students and mathematicians in other fields with the fundamental material in this subject. In addition, several applications of the type described above are included. In general we have tried to make this book self-contained, beginning with elementary concepts wherever possible; however, we assume that the reader is familiar with the basic definitions of homotopy theory: homotopy classes of maps and homotopy groups.Thus this book might be regarded as a fairly self-contained introduction to a 'generalized cohomology theory'.




Max Karoubi received his PhD in mathematics (Doctorat d'Etat) from Paris University in 1967, while working in the CNRS (Centre National de la Recherche Scientifique), under the supervision of Henri Cartan and Alexander Grothendieck.  After his PhD, he took a position of 'Maître de Conférences' at the University of Strasbourg until 1972. He was then nominated full Professor at the University of Paris 7-Denis Diderot until 2007. He is now an Emeritus Professor there.

Max Karoubi received his PhD in mathematics (Doctorat d'Etat) from Paris University in 1967, while working in the CNRS (Centre National de la Recherche Scientifique), under the supervision of Henri Cartan and Alexander Grothendieck.  After his PhD, he took a position of "Maître de Conférences" at the University of Strasbourg until 1972. He was then nominated full Professor at the University of Paris 7-Denis Diderot until 2007. He is now an Emeritus Professor there.

Vector Bundles.- First Notions of K-Theory.- Bott Periodicity.- Computation of Some K-Groups.- Some Applications of K-Theory.- Vector Bundles.- First Notions of K-Theory.- Bott Periodicity.- Computation of Some K-Groups.

Erscheint lt. Verlag 27.11.2009
Reihe/Serie Classics in Mathematics
Verlagsort Berlin
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Technik
Schlagworte Algebra • algebraic topology • applications of K-Theory • Compact space • Homotopy • Homotopy group • homotopy theory • K-theory • MSC(2000): 55-XX, 55N15, 18F25, 55Pxx, 19-XX • Topology • vector bundle
ISBN-10 3-540-79890-0 / 3540798900
ISBN-13 978-3-540-79890-3 / 9783540798903
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich