Power-Aware Testing and Test Strategies for Low Power Devices (eBook)
XXI, 363 Seiten
Springer US (Verlag)
978-1-4419-0928-2 (ISBN)
Managing the power consumption of circuits and systems is now considered one of the most important challenges for the semiconductor industry. Elaborate power management strategies, such as dynamic voltage scaling, clock gating or power gating techniques, are used today to control the power dissipation during functional operation. The usage of these strategies has various implications on manufacturing test, and power-aware test is therefore increasingly becoming a major consideration during design-for-test and test preparation for low power devices. This book explores existing solutions for power-aware test and design-for-test of conventional circuits and systems, and surveys test strategies and EDA solutions for testing low power devices.
Managing the power consumption of circuits and systems is now considered one of the most important challenges for the semiconductor industry. Elaborate power management strategies, such as dynamic voltage scaling, clock gating or power gating techniques, are used today to control the power dissipation during functional operation. The usage of these strategies has various implications on manufacturing test, and power-aware test is therefore increasingly becoming a major consideration during design-for-test and test preparation for low power devices. This book explores existing solutions for power-aware test and design-for-test of conventional circuits and systems, and surveys test strategies and EDA solutions for testing low power devices.
Summary and Objective of the Book 5
About the Editors 6
Preface 8
Contents 12
Contributors 21
1 Fundamentals of VLSI Testing 22
1.1 Introduction 22
1.2 Fault Models 26
1.3 Design for Testability 28
1.3.1 Ad Hoc Methods 28
1.3.2 Scan Design 31
1.3.3 Built-In Self-Test 32
1.3.4 Test Compression 34
1.4 Logic Testing 36
1.5 Memory Testing 40
1.6 System-On-Chip Testing 44
1.7 Summary and Conclusions 46
References 47
2 Power Issues During Test 51
2.1 Introduction 51
2.2 Power and Energy Basics 53
2.2.1 Static Dissipation 53
2.2.1.1 Reverse-Biased pn Junction Leakage Current 54
2.2.1.2 Sub-threshold Leakage Current 54
2.2.1.3 Gate Leakage Current 55
2.2.1.4 Gate-Induced Drain Leakage Current 56
2.2.2 Dynamic Dissipation 57
2.2.2.1 Dynamic Dissipation Due to Charging and Discharging of Load Capacitors 57
2.2.2.2 Dynamic Dissipation Due to Short-Circuit Current 59
2.2.3 Total Power Dissipation 60
2.2.4 Energy Dissipation 60
2.3 Manufacturing Test Flow 61
2.3.1 Characterization Test 61
2.3.2 Production Test 61
2.3.3 Burn-in Test 61
2.3.4 Incoming Inspection 62
2.3.5 Typical Test Flow 62
2.4 Power Delivery Issues During Test 63
2.4.1 Packaging 64
2.4.2 Power Grid Issues 66
2.4.3 Power Supply Noise 66
2.4.3.1 Low-Frequency Power Droop 67
2.4.3.2 Mid-Frequency Power Droop 68
2.4.3.3 High-Frequency Power Droop 68
2.4.3.4 Voltage Drop During At-Speed Scan 69
2.5 Thermal Issues During Test 70
2.6 Test Throughput Problem 72
2.6.1 Limited Power Availability During Wafer Sort Test 72
2.6.2 Reduction in Test Frequency During Package Test 73
2.6.3 Constraint on Simultaneous Testing of Multiple Cores 73
2.6.4 Noisy Power Supply During Wafer Sort Test 73
2.7 Manufacturing Yield Loss 74
2.7.1 ATE Timing Inaccuracy 74
2.7.2 Application of Illegal Test Vectors 75
2.8 Test Power Metrics and Estimation 76
2.8.1 Power Metrics 77
2.8.2 Modeling of Power and Energy Metrics 77
2.8.3 Test Power Estimation 79
2.9 Summary 80
References 81
3 Low-Power Test Pattern Generation 84
3.1 Introduction 84
3.2 Low-Power ATPG 86
3.2.1 General Low-Power Test Generation 86
3.2.2 Low-Shift-Power Scan Test Generation 87
3.2.3 Low-Capture-Power Scan Test Generation 88
3.2.3.1 Capture-Safety Checking 91
3.2.3.2 LCP ATPG Technique 1: Reversible Backtracking 93
3.2.3.3 LCP ATPG Technique 2: Clock Manipulation 94
3.3 Low-Power Test Compaction 97
3.3.1 Low-Power Dynamic Compaction 97
3.3.2 Low-Power Static Compaction 98
3.3.2.1 Low-Shift-Power Static Compaction 98
3.3.2.2 Low-Capture-Power Static Compaction 99
3.4 Low-Power X-Filling 100
3.4.1 Test Cube Preparation 101
3.4.1.1 Direct Generation 101
3.4.1.2 Test Relaxation 102
3.4.2 Low-Shift-Power X-Filling 106
3.4.2.1 Shift-In Power Reduction 107
3.4.2.2 Shift-Out Power Reduction 108
3.4.2.3 Total Shift Power Reduction 108
3.4.3 Low-Capture-Power X-Filling 109
3.4.3.1 FF-Oriented X-Filling 109
3.4.3.2 Node-Oriented X-Filling 114
3.4.3.3 Critical-Area-Oriented X-Filling 116
3.4.4 Low-Shift-and-Capture-Power X-Filling 116
3.4.4.1 Impact-Oriented X-Filling 117
3.4.4.2 X-Distribution-Controlled Test Relaxation and Hybrid X-Filling 118
3.4.4.3 Bounded Adjacent Fill 120
3.4.5 Low-Power X-Filling for Compressed Scan Testing 120
3.4.5.1 X-Filling for Code-Based Test Compression 121
3.4.5.2 X-Filling for Linear-Decompressor-Based Test Compression 123
3.4.5.3 X-Filling in Broadcast-Based TestCompression 124
3.5 Low-Power Test Ordering 124
3.5.1 Internal-Transition-Based Ordering 124
3.5.2 Inter-Vector-Hamming-Distance-Based Ordering 125
3.5.3 Input-Transition-Density-Based Ordering 126
3.6 Low-Power Memory Test Generation 127
3.6.1 Address Switching Activity Reduction 127
3.6.2 Precharge Restriction 128
3.7 Summary and Conclusions 129
References 130
4 Power-Aware Design-for-Test 135
4.1 Introduction 135
4.2 Power Consumption in Scan Design 136
4.2.1 Power Consumption of the Circuit Under Test 136
4.2.2 Types of Power Consumption in Scan Testing 137
4.3 Low-Power Scan Cells 139
4.3.1 Power Considerations of Standard Scan Cells 139
4.3.2 Scan Clock Gating 140
4.3.3 Test Planning for Scan Clock Gating 143
4.3.4 Toggle Suppression 145
4.4 Scan Path Organization 146
4.4.1 Scan Path Segmentation 147
4.4.2 Extended Clock Schemes for Scan Segmentation 149
4.4.3 Scan Cell Clustering 151
4.4.4 Scan Cell Ordering 152
4.4.5 Scan Tree and Scan Forest 154
4.4.6 Inserting Logic into the Scan Path 156
4.5 Partitioning for Low Power 157
4.5.1 Partitioning by Clock Gating 158
4.5.2 Partitioning in Core-Based Design 159
4.5.3 Partitioning of the Combinational Logic 160
4.6 Summary and Conclusions 161
References 162
5 Power-Aware Test Data Compression and BIST 165
5.1 Introduction 165
5.2 Coding-Based Compression Methods 168
5.2.1 Golomb Code 168
5.2.2 Alternating Run-Length Code 170
5.2.3 Recent Advances in Coding-Based Compression Methods 172
5.3 LFSR-Decompressor-Based Compression Methods 175
5.4 Broadcast-Scan-Based Compression Methods 176
5.5 Low-Power BIST Techniques 177
5.5.1 Vector Inhibition and Selection 180
5.5.2 Modified TPG 181
5.5.3 Modified Scan and Reordering 185
5.5.4 Test Scheduling 186
5.6 Summary and Conclusions 187
References 187
6 Power-Aware System-Level Test Planning 192
6.1 Introduction 192
6.2 Core-Based Test Architecture Design and Test Planning 195
6.2.1 Core Test Wrapper 196
6.2.2 Test Access Mechanism Design 197
6.2.3 Test Scheduling 198
6.3 Power Modeling, Estimation, and Manipulation 200
6.3.1 Modeling Power Consumption and Constraints 202
6.3.1.1 Power Modeling 202
6.3.1.2 Power Constraint Modeling 204
6.3.2 Power Estimation 205
6.3.3 Power Manipulation 208
6.3.3.1 Power-Aware Wrapper Design 209
6.3.3.2 Ordering of Test Data 210
6.4 Power-Constrained Test Planning 211
6.4.1 Power-Constrained Test Scheduling 212
6.4.2 Power-Aware Test Architecture Design and Test Scheduling 215
6.4.3 Power-Constrained Test Planning Utilizing Power-Aware DfT 217
6.4.3.1 DfT for Shift-Power Reduction 217
6.4.3.2 DfT for Capture-Power Reduction 218
6.5 Hierarchical Test Planning Strategies for SOCs 219
6.5.1 Low-Power Test Planning for Multiple Clock Domains 219
6.5.2 IDDQ Test Planning for Core-Based System Chips 221
6.6 Summary 223
References 224
7 Low-Power Design Techniques and Test Implications 229
7.1 Introduction 229
7.2 Low-Power Design Trends 232
7.2.1 Dynamic Power Reduction Techniques 232
7.2.1.1 Circuit Optimization for Low Power 232
7.2.1.2 Clock Gating 233
7.2.1.3 Operand Isolation 233
7.2.1.4 Advanced Power and Thermal Management 234
7.2.2 Leakage Power Reduction Techniques 235
7.2.2.1 Input Vector Control 235
7.2.2.2 Dual-Vth Design 236
7.2.2.3 Supply Gating 237
7.2.2.4 Shannon Cofactoring-Based Dynamic Supply Gating 238
7.2.2.5 Leakage Control in Memory 239
7.3 Power Specification Format 239
7.4 Implications to Test Requirement and Test Cost 242
7.4.1 Impact of Dynamic Power Reduction Techniques on Test 242
7.4.1.1 Static Design-Time Techniques 242
7.4.1.2 Dynamic Power Reduction Techniques 243
7.4.2 Impact of Leakage Power Reduction Techniques on Test 244
7.4.2.1 Leakage Reduction Using IVC 244
7.4.2.2 Shannon Decomposition-Based Logic Synthesis 244
7.4.2.3 Leakage Reduction in Memory 244
7.4.2.4 Thermal Stability During Burn-In 245
7.5 Low-Power Design Techniques for Test Power and Coverage Improvement 245
7.6 Self-Calibrating and Self-Correcting Systems for Power-Related Failure Detection 250
7.6.1 Self-Calibration and Repair in Logic Circuits 250
7.6.1.1 RAZOR 250
7.6.1.2 Body Biasing and Effect on Delay Test 251
7.6.1.3 Process Compensation in Dynamic Circuits 252
7.6.1.4 Delay Calibration 253
7.6.2 Self-Repairing SRAM 253
7.7 Summary and Conclusions 255
References 255
8 Test Strategies for Multivoltage Designs 259
8.1 Introduction 259
8.2 Test for Multivoltage Design: Bridge Defect 260
8.2.1 Resistive Bridge Behavior at Single-Vdd Setting 261
8.2.2 Resistive Bridge Behavior at Multi-Vdd Settings 264
8.2.3 Cost-Effective Test for Resistive Bridge 267
8.2.3.1 Test Point Insertion 268
8.2.3.2 Gate Sizing 268
8.3 Test for Multivoltage Design: Open Defect 271
8.3.1 Testing Full-Open Defect 271
8.3.2 Testing Resistive Open Defect 274
8.4 DFT for Low-Power Design 277
8.4.1 Multivoltage-Aware Scan 277
8.4.2 Power-Managed Scan Using Adaptive Voltage Scaling 279
8.5 Open Research Problems 281
8.5.1 Impact of Voltage and Process Variation on Test Quality 281
8.5.2 Diagnosis for Multivoltage Designs 282
8.5.3 Voltage Scaling for Nanoscale SRAM 283
8.6 Summary and Conclusions 284
References 284
9 Test Strategies for Gated Clock Designs 288
9.1 Introduction 288
9.2 DFT for Clock Gating Logic 291
9.2.1 Safe Gating of Clocks in Edge Sensitive Designs 291
9.2.2 Edge Sensitive, MUXed Scan 291
9.2.3 LSSD 295
9.2.4 Advanced DFT with On-Product Clock Generation (OPCG) 296
9.2.5 Overriding of Functional Clock Gating 297
9.3 Taking Advantage of Clock Gating 297
9.3.1 Locating Where Clocks are Gated 301
9.3.2 Identifying ``Default' Values 303
9.3.3 Dynamically Augmenting a Test 305
9.4 Summary and Conclusions 306
References 307
10 Test of Power Management Structures 309
10.1 Clock Gating Logic 309
10.1.1 Controlling Clock Gaters during Test 310
10.1.2 Impact on Testability of the Clock Gater and its Control Logic 310
10.1.3 Impact on Power and Pattern Count 311
10.2 Power Control Logic 312
10.2.1 Role of Power Control Logic 312
10.2.2 Power Control during Shift 313
10.2.3 Power Control during Capture 314
10.2.4 Testing the Power Control Logic 315
10.3 Power Switches 317
10.3.1 Types of Power Switches 318
10.3.2 Testing of Power Switches 319
10.3.3 Methodologies for Testing Power Switches 319
10.3.4 Testing Problems and Possible Solution 325
10.4 Low-Power Cells 326
10.4.1 State Retention Registers 326
10.4.2 Isolation Cells 327
10.4.3 Level Shifters 328
10.5 Power Distribution Network 328
10.5.1 PDN Structures 330
10.5.2 Open Defects in PDNs 331
10.5.3 Pattern Generation Procedure 332
10.6 Summary and Conclusions 335
References 335
11 EDA Solution for Power-Aware Design-for-Test 337
11.1 Introduction 337
11.2 Design Flows for Power Management 339
11.2.1 Multi-voltage and Power Gating Context 339
11.2.2 Unified Power Format 341
11.2.2.1 Creation of Power Domains 341
11.2.2.2 Top-Level Connections 341
11.2.2.3 Primary Power Nets 342
11.2.2.4 Creation and Mapping of Power Switch Cell 342
11.2.2.5 Definition of Isolation Strategy and Isolation Control 342
11.2.2.6 Retention Strategy and Retention Control in pd1 343
11.2.2.7 Power State Table 343
11.2.2.8 Level Shifter Strategy 343
11.3 Test Automation Objectives 344
11.3.1 Quality of Results 344
11.3.2 DFT Requirements in Mission Mode 344
11.3.3 Integration into Design Flows 345
11.4 Integration of Power Management Techniques in Design-for-Test Synthesis Flows 345
11.4.1 DFT for Low-Power Rules 346
11.4.1.1 Stability of Test Modes during Test 347
11.4.1.2 Controllability of Isolation Enables 348
11.4.1.3 Controllability of Retention Signals 348
11.4.1.4 Scan Architecting across Power Domains 348
11.4.1.5 Controllability of Power Switches 348
11.4.1.6 Power Mode to Test Mode Mapping 349
11.4.2 Handling of State Retention Registers 349
11.4.3 Impact on DFT Architecture 351
11.4.3.1 User Control 351
11.4.3.2 Minimizing Domains Crossing 351
11.4.3.3 Impact on Scan Chain Reordering 352
11.4.4 Impact on DFT Implementation 354
11.4.4.1 Re-use of LS and ISO Cells during Scan Stitching 354
11.4.4.2 Automatic Insertion of LS and ISO Cells 355
11.4.4.3 Design Synthesis Flow Impact 356
11.4.5 Power Annotation and Hierarchical Design Flows 356
11.4.5.1 Low-Power Annotation 357
11.4.5.2 Scan Modeling Enhancement 357
11.4.5.3 Voltage Annotation for DFT Insertion 357
11.4.5.4 Power Domain Annotation for DFT Insertion 358
11.5 Test Planning 359
11.5.1 Predictability of Results 359
11.5.2 Power Dissipation vs. Test Application Time 360
11.5.3 Need for Multi-mode DFT Architecture 360
11.5.4 Test Scheduling Considerations 362
11.5.4.1 User Power Mode to Test Mode Mapping 362
11.5.4.2 ATPG Requirements 364
11.6 Summary and Conclusions 365
References 366
Summary 368
Index 370
Erscheint lt. Verlag | 11.3.2010 |
---|---|
Zusatzinfo | XXI, 363 p. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Informatik ► Weitere Themen ► CAD-Programme |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | Electronic Testing • Low Power Design • Low Power Testing • Nanoscale Testing • Nicolici • Power Aware Testing • power management • semiconductor • Semiconductor Testing • Testing • VLSI • Wen |
ISBN-10 | 1-4419-0928-1 / 1441909281 |
ISBN-13 | 978-1-4419-0928-2 / 9781441909282 |
Haben Sie eine Frage zum Produkt? |
Größe: 12,3 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich