Neural Networks (eBook)

Methodology and Applications

(Autor)

eBook Download: PDF
2005 | 2005
XVIII, 498 Seiten
Springer Berlin (Verlag)
978-3-540-28847-3 (ISBN)

Lese- und Medienproben

Neural Networks - Gérard Dreyfus
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Neural networks represent a powerful data processing technique that has reached maturity and broad application. When clearly understood and appropriately used, they are a mandatory component in the toolbox of any engineer who wants make the best use of the available data, in order to build models, make predictions, mine data, recognize shapes or signals, etc. Ranging from theoretical foundations to real-life applications, this book is intended to provide engineers and researchers with clear methodologies for taking advantage of neural networks in industrial, financial or banking applications, many instances of which are presented in the book. For the benefit of readers wishing to gain deeper knowledge of the topics, the book features appendices that provide theoretical details for greater insight, and algorithmic details for efficient programming and implementation. The chapters have been written by experts and edited to present a coherent and comprehensive, yet not redundant, practically oriented introduction.



Scientists

Scientists

Preface 5
Reading Guide 6
Contents 8
List of Contributors 16
1 Neural Networks: An Overview 18
1.1 Neural Networks: Definitions and Properties 19
1.2 When and How to Use Neural Networks with Supervised Training 41
1.3 Feedforward Neural Networks and Discrimination ( Classification) 49
1.4 Some Applications of Neural Networks to Various Areas of Engineering 67
1.5 Conclusion 93
1.6 Additional Material 94
References 97
2 Modeling with Neural Networks: Principles and Model Design Methodology 101
2.1 What Is a Model? 101
2.2 Elementary Concepts and Vocabulary of Statistics 103
2.3 Static Black-Box Modeling 108
2.4 Input Selection for a Static Black-Box Model 111
2.5 Estimation of the Parameters (Training) of a Static Model 119
2.6 Model Selection 147
2.7 Dynamic Black-Box Modeling 165
2.8 Dynamic Semiphysical (Gray Box) Modeling 191
2.9 Conclusion: What Tools? 202
2.10 Additional Material 203
References 215
3 Modeling Methodology: Dimension Reduction and Resampling Methods 218
3.1 Introduction 218
3.2 Preprocessing 219
3.3 Input Dimension Reduction 222
3.4 Principal Component Analysis 222
3.5 Curvilinear Component Analysis 226
3.6 The Bootstrap and Neural Networks 235
References 245
4 Neural Identification of Controlled Dynamical Systems and Recurrent Networks 246
4.1 Formal Definition and Examples of Discrete-Time Controlled Dynamical Systems 247
4.2 Regression Modeling of Controlled Dynamical Systems 257
4.3 On-Line Adaptive Identification and Recursive Prediction Error Method 265
4.4 Innovation Filtering in a State Model 273
4.5 Recurrent Neural Networks 285
4.6 Learning for Recurrent Networks 291
4.7 Appendix (Algorithms and Theoretical Developments) 298
References 302
5 Closed-Loop Control Learning 303
5.1 Generic Issues in Closed-Loop Control of Nonlinear Systems 304
5.2 Design of a Neural Control with an Inverse Model 308
5.3 Dynamic Programming and Optimal Control 317
5.4 Reinforcement Learning and Neuro-Dynamic Programming 328
References 339
6 Discrimination 342
6.1 Training for Pattern Discrimination 343
6.2 Linear Separation: The Perceptron 347
6.3 The Geometry of Classification 349
6.4 Training Algorithms for the Perceptron 352
6.5 Beyond Linear Separation 368
6.6 Problems with More than two Classes 375
6.7 Theoretical Questions 377
6.8 Additional Theoretical Material 387
References 389
7 Self-Organizing Maps and Unsupervised Classification 391
7.1 Notations and Definitions 393
7.2 The k-Means Algorithm 395
7.3 Self-Organizing Topological Maps 404
7.4 Classification and Topological Maps 427
7.5 Applications 433
References 453
8 Neural Networks without Training for Optimization 455
8.1 Modelling an Optimisation Problem 455
8.2 Complexity of an Optimization Problem 458
8.3 Classical Approaches to Combinatorial Problems 459
8.4 Introduction to Metaheuristics 460
8.5 Techniques Derived from Statistical Physics 461
8.6 Neural Approaches 475
8.7 Tabu Search 496
8.8 Genetic Algorithms 496
8.9 Towards Hybrid Approaches 497
8.10 Conclusion 497
References 498
About the Authors 503
Index 505

Erscheint lt. Verlag 25.11.2005
Zusatzinfo XVIII, 498 p.
Verlagsort Berlin
Sprache englisch
Original-Titel Réseaux de neurones - Méthodologies et application
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik
Naturwissenschaften Physik / Astronomie Theoretische Physik
Technik Nachrichtentechnik
Schlagworte classification • Data Analysis • Dynamical Systems • Information and Communication, Circuits • learning • Markov models • Neural networks • Optimization • pattern recognition • Robotics
ISBN-10 3-540-28847-3 / 3540288473
ISBN-13 978-3-540-28847-3 / 9783540288473
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
17,43