Spotlight on Modern Transformer Design (eBook)

eBook Download: PDF
2009 | 2009
XX, 427 Seiten
Springer London (Verlag)
978-1-84882-667-0 (ISBN)

Lese- und Medienproben

Spotlight on Modern Transformer Design - Pavlos Stylianos Georgilakis
Systemvoraussetzungen
192,59 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Spotlight on Modern Transformer Design introduces a novel approach to transformer design using artificial intelligence (AI) techniques in combination with finite element method (FEM). Today, AI is widely used for modeling nonlinear and large-scale systems, especially when explicit mathematical models are difficult to obtain or completely lacking. Moreover, AI is computationally efficient in solving hard optimization problems.

Many numerical examples throughout the book illustrate the application of the techniques discussed to a variety of real-life transformer design problems, including:

• problems relating to the prediction of no-load losses;

• winding material selection;

• transformer design optimisation;

• and transformer selection.

Spotlight on Modern Transformer Design is a valuable learning tool for advanced undergraduate and graduate students, as well as researchers and power engineering professionals working in electric utilities and industries, public authorities, and design offices.



Pavlos S. Georgilakis is currently assistant professor in the production engineering and management department of the Technical University of Crete, Greece. He received a diploma in electrical and computer engineering and a PhD from the National Technical University of Athens, Greece in 1990 and 2000 respectively. In his doctoral thesis, entitled 'Contribution of Artificial Intelligence Techniques in the Reduction of Distribution Transformer Iron Losses', he introduced the concept of artificial intelligence in transformer design.

He worked in the transformer industry for 10 years before joining academia. From 1994 to 2003 he was with Schneider Electric AE, where he worked as transformer quality control engineer for one year, transformer design engineer for four years, transformer research and development manager for three years, and marketing manager for two years. He has considerable experience in the design, development, and manufacturing of transformers.

Assistant Professor Georgilakis has designed and supervised eight research projects in the field of transformer design, which have been funded by the government and the private sector. He is the author of two books, 40 papers in international journals, and 70 papers in international conference proceedings. His current research interests include transformer design and modeling, artificial intelligence techniques in transformer design and power systems, numerical techniques in the analysis and design of power transformers, and renewable energy sources. He is a member of the IEEE, the CIGRE, and the Technical Chamber of Greece.


Increasing competition in the global transformer market has put tremendous responsibilities on the industry to increase reliability while reducing cost. Spotlight on Modern Transformer Design introduces a novel approach to transformer design using artificial intelligence (AI) techniques in combination with finite element method (FEM). Today, AI is widely used for modeling nonlinear and large-scale systems, especially when explicit mathematical models are difficult to obtain or completely lacking. Moreover, AI is computationally efficient in solving hard optimization problems. On the other hand, FEM is particularly capable of dealing with complex geometries, and also yields stable and accurate solutions.Many numerical examples throughout the book illustrate the application of the techniques discussed to a variety of real-life transformer design problems, including: problems relating to the prediction of no-load losses; winding material selection; transformer design optimisation; and transformer selection.Spotlight on Modern Transformer Design is a valuable learning tool for advanced undergraduate and graduate students, as well as researchers and power engineering professionals working in electric utilities and industries, public authorities, and design offices.Pavlos S. Georgilakis is currently Assistant Professor at the Production Engineering and Management Department of the Technical University of Crete (TUC), Greece. He has worked in the transformer industry for ten years before joining the TUC. He is the author of two books, more than 50 journal papers and 70 conference papers.

Pavlos S. Georgilakis is currently assistant professor in the production engineering and management department of the Technical University of Crete, Greece. He received a diploma in electrical and computer engineering and a PhD from the National Technical University of Athens, Greece in 1990 and 2000 respectively. In his doctoral thesis, entitled "Contribution of Artificial Intelligence Techniques in the Reduction of Distribution Transformer Iron Losses", he introduced the concept of artificial intelligence in transformer design. He worked in the transformer industry for 10 years before joining academia. From 1994 to 2003 he was with Schneider Electric AE, where he worked as transformer quality control engineer for one year, transformer design engineer for four years, transformer research and development manager for three years, and marketing manager for two years. He has considerable experience in the design, development, and manufacturing of transformers. Assistant Professor Georgilakis has designed and supervised eight research projects in the field of transformer design, which have been funded by the government and the private sector. He is the author of two books, 40 papers in international journals, and 70 papers in international conference proceedings. His current research interests include transformer design and modeling, artificial intelligence techniques in transformer design and power systems, numerical techniques in the analysis and design of power transformers, and renewable energy sources. He is a member of the IEEE, the CIGRE, and the Technical Chamber of Greece.

Foreword 6
Preface 8
Contents 13
1 Transformers 20
1.1 Introduction 20
1.2 Magnetic Circuits 1.2.1 General 21
1.2.2 Analysis of Magnetic Circuits 24
1.2.3 Flux Linkage 26
1.2.4 Magnetic Materials 27
1.3 Transformer Fundamentals 1.3.1 Equivalent Circuit 29
1.3.2 Derivation of Equivalent Circuit Parameters 31
1.3.3 Voltage Regulation 35
1.3.4 Efficiency 40
1.4 Transformer Electrical Characteristics 1.4.1 Rated Power 44
1.4.2 Temperature Rise 45
1.4.3 Ambient Temperature 45
1.4.4 Altitude of Installation 46
1.4.5 Impedance Voltage 46
1.4.6 No-Load Losses 46
1.4.7 Load Losses 47
1.4.8 Rated Voltages 48
1.4.9 Vector Group 48
1.4.10 Frequency 49
1.4.11 Noise 49
1.4.12 Short-Circuit Current 49
1.4.13 No-Load Current 49
1.5 Transformer Operation 1.5.1 Overloading 50
1.5.2 Parallel Operation 50
1.5.3 Load Distribution to Transformers in Parallel Operation 51
1.6 Transformer Standards and Tolerances 1.6.1 Transformer Standards 52
1.6.2 Tolerances 53
1.7 Transformer Tests 54
1.7.1 Type Tests 54
1.7.2 Routine Tests 54
1.7.3 Special Tests 56
1.8 Transformer Types 56
1.8.1 Classification According to Transformer Use 57
1.8.2 Classification According to Transformer Cooling Method 57
1.8.3 Classification According to Transformer Insulating Medium 58
1.8.4 Classification According to Transformer Core Construction 58
1.9 Transformers Studied in this Book 59
References 60
2 Conventional Transformer Design 61
2.1 Nomenclature 61
2.2 Introduction 65
2.3 Problem Formulation 65
2.3.1 Objective Function 66
2.3.2 Constraints 68
2.3.3 Mathematical Formulation of the TDO Problem 73
2.3.4 Characteristics of the TDO Problem 74
2.4 Conventional Transformer Design Optimization Method 2.4.1 Methodology 75
2.4.2 Case Study 78
2.4.3 Repetitive Transformer Design Process 82
2.5 Example of Transformer Design Data 84
2.5.1 Values of Description Variables 86
2.5.2 Values of Special Variables 86
2.5.3 Values of Default Variables 86
2.5.4 Values of Cost Variables 86
2.5.5 Values of Various Variables 87
2.5.6 Values of Conductor Cross-Section Calculation Variables 87
2.5.7 Values of Design Variables 87
2.6 Calculation of Volts per Turn and Thickness of Core Leg 2.6.1 Calculation of Volts per Turn 90
2.6.2 Calculation of Thickness of Core Leg 90
2.6.3 Example 2.1 92
2.7 Calculation of Layer Insulation 93
2.7.1 Layer Insulation of LV Winding 94
2.7.2 Layer Insulation of HV Winding 94
2.7.3 Example 2.2 94
2.8 Calculation of Winding and Core Dimensions 95
2.8.1 Example 2.3 95
2.9 Calculation of Core Weight and No-Load Loss 100
2.9.1 Example 2.4 102
2.10 Calculation of Inductive Part of Impedance Voltage 103
2.10.1 Example 2.5 105
2.11 Calculation of Load Loss 110
2.11.1 Example 2.6 110
2.12 Calculation of Impedance Voltage 115
2.12.1 Example 2.7 116
2.13 Calculation of Coil Length 116
2.13.1 Example 2.8 117
2.14 Calculation of Tank Dimensions 118
2.14.1 Example 2.9 118
2.15 Calculation of Winding Gradient and Oil Gradient 119
2.15.1 Example 2.10 119
2.16.1 Example 2.11 124
2.17 Calculation of the Weight of Insulating Materials 126
2.17.1 Example 2.12 126
2.18 Calculation of the Weight of Ducts 130
2.18.1 Example 2.13 130
2.19 Calculation of the Weight of Oil 131
2.19.1 Example 2.14 131
2.20 Calculation of the Weight of Sheet Steel 132
2.20.1 Example 2.15 133
2.21 Calculation of the Weight of Corrugated Panels 133
2.21.1 Example 2.16 133
2.22 Calculation of the Cost of Transformer Main Materials 133
2.22.1 Example 2.17 134
2.23 Calculation of Transformer Manufacturing Cost 135
2.23.1 Example 2.18 136
References 138
3 Numerical Analysis 140
3.1 Introduction 3.1.1 Magnetostatic Problems 140
3.1.2 Methods for the Solution of Magnetostatic Problems 142
3.2 Finite Element Method 3.2.1 Introduction 143
3.2.2 Applications to Power Engineering 144
3.2.3 Solution of Linear Magnetostatic Problems 145
3.2.4 Solution of Nonlinear Magnetostatic Problems 161
References 168
4 Classification and Forecasting 172
4.1 Introduction 172
4.2 Automatic Learning 173
4.3 Data Mining 173
4.3.1 Representation 174
4.3.2 Attribute Selection 174
4.3.3 Model Selection 174
4.3.4 Interpretation and Validation 174
4.3.5 Model Use 175
4.4 Learning Set and Test Set 175
4.4.1 Classification 175
4.4.2 Forecasting 176
4.5 Decision Trees 4.5.1 Introduction 177
4.5.2 Applications to Power Systems 178
4.5.3 General Characteristics 179
4.5.4 Top Down Induction 180
4.5.5 Optimal Splitting Rule 182
4.5.6 Stop Splitting Rule 185
4.5.7 Overview of Decision Tree Building Algorithm 188
4.5.8 Example 4.1 189
4.5.9 Example 4.2 194
4.6 Artificial Neural Networks 4.6.1 Introduction 200
4.6.2 Applications to Power Systems 201
4.6.3 ANN Types 202
4.6.4 Neuron Mathematical Model 203
4.6.5 ANN Architectures 204
4.6.6 ANN Training 206
4.6.7 ANN Configuration 220
4.6.8 Example 4.5 222
4.7 Hybrid Decision Tree–Neural Network Classifier 225
4.7.1 Example 4.6 226
References 227
5 Optimization 233
5.1 Introduction 233
5.2 Quadratic Programming 5.2.1 Methodology 236
5.2.2 Applications to Power Systems 239
5.2.3 Example 5.1 239
5.3 Sequential Quadratic Programming 5.3.1 Methodology 245
5.3.2 Applications to Power Systems 247
5.3.3 Example 5.2 247
5.4 Branch-and-Bound 5.4.1 Methodology 253
5.4.2 Applications to Power Systems 255
5.4.3 Example 5.3 255
5.5 Genetic Algorithms 5.5.1 Methodology 258
5.5.2 Applications to Power Systems 262
5.5.3 Example 5.4 263
References 270
6 Evaluation of Transformer Technical Characteristics 277
6.1 Introduction 277
6.2 No-Load Loss Classification with Decision Trees and Artificial Neural Networks 6.2.1 Introduction 278
6.2.2 Individual Core 279
6.2.3 Transformer 293
6.3 No-Load Loss Forecasting with Artificial Neural Networks 6.3.1 Introduction 304
6.3.2 Forecasting Accuracy 306
6.3.3 Individual Core 306
6.3.4 Transformer 310
6.4.2 Finite Element Model 314
6.4.3 Results and Discussion 329
References 337
7 Transformer Design Optimization 342
7.1 Introduction 342
7.2 No-Load Loss Reduction with Genetic Algorithms 7.2.1 Introduction 343
7.2.2 Conventional Core Grouping Process 343
7.2.3 Genetic Algorithm Solution to the TNLLR Problem 345
7.2.4 Results 352
7.3 Winding Material Selection with Decision Trees and Artificial Neural Networks 7.3.1 Introduction 354
7.3.2 Creation of Knowledge Base 355
7.3.3 Decision Trees 357
7.3.4 Adaptive Trained Neural Networks 360
7.3.5 Synthesis 370
7.4 Transformer Design Optimization with Branch-and-Bound 7.4.1 Introduction 370
7.4.2 MIP-FEM Methodology 371
7.4.3 Results and Discussion 375
7.5 Transformer Design Optimization with Genetic Algorithms 7.5.1 Introduction 379
7.5.2 Recursive GA-FEM Methodology 379
7.5.3 Results and Discussion 383
References 385
8 Transformer Selection 388
8.1 Introduction 388
8.2 Total Owning Cost for Industrial and Commercial Users 8.2.1 Cost Evaluation Method 389
8.2.2 Example 8.1 393
8.2.3 Example 8.2 396
8.2.4 Example 8.3 396
8.3 Total Owning Cost for Electric Utilities 8.3.1 Cost Evaluation Method 402
8.3.2 Example 8.4 405
8.3.3 Example 8.5 407
8.4 Proposed TOC Incorporating Environmental Cost 8.4.1 Introduction 411
8.4.2 Cost Evaluation Method 413
8.4.3 Example 8.6 418
8.4.4 Example 8.7 419
8.4.5 Example 8.8 420
8.4.6 Example 8.9 422
8.4.7 Example 8.10 428
References 430
Index 433

Erscheint lt. Verlag 30.7.2009
Reihe/Serie Power Systems
Power Systems
Zusatzinfo XX, 427 p.
Verlagsort London
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Informatik Weitere Themen CAD-Programme
Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Schlagworte Artificial Intelligence • classification • CP4622 • electrical machines • Finite Element Method • Intelligence • learning • Modeling • Numerical analysis • numerical techniques • optimisation • Optimization • Transformer Design
ISBN-10 1-84882-667-2 / 1848826672
ISBN-13 978-1-84882-667-0 / 9781848826670
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 10,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
24,90