Computational Statistics (eBook)

(Autor)

eBook Download: PDF
2009 | 2009
XXII, 728 Seiten
Springer New York (Verlag)
978-0-387-98144-4 (ISBN)

Lese- und Medienproben

Computational Statistics - James E. Gentle
Systemvoraussetzungen
85,55 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Computational inference uses modern computational power to simulate distributional properties of estimators and test statistics. This book describes computationally intensive statistical methods in a unified presentation.
Computational inference has taken its place alongside asymptotic inference and exact techniques in the standard collection of statistical methods. Computational inference is based on an approach to statistical methods that uses modern computational power to simulate distributional properties of estimators and test statistics. This book describes computationally-intensive statistical methods in a unified presentation, emphasizing techniques, such as the PDF decomposition, that arise in a wide range of methods.
The book assumes an intermediate background in mathematics, computing, and applied and theoretical statistics. The first part of the book, consisting of a single long chapter, reviews this background material while introducing computationally-intensive exploratory data analysis and computational inference.
The six chapters in the second part of the book are on statistical computing. This part describes arithmetic in digital computers and how the nature of digital computations affects algorithms used in statistical methods. Building on the first chapters on numerical computations and algorithm design, the following chapters cover the main areas of statistical numerical analysis, that is, approximation of functions, numerical quadrature, numerical linear algebra, solution of nonlinear equations, optimization, and random number generation.
The third and fourth parts of the book cover methods of computational statistics, including Monte Carlo methods, randomization and cross validation, the bootstrap, probability density estimation, and statistical learning.
The book includes a large number of exercises with some solutions provided in an appendix.

James E. Gentle is University Professor of Computational Statistics at George Mason University. He is a Fellow of the American Statistical Association (ASA) and of the American Association for the Advancement of Science. He has held several national offices in the ASA and has served as associate editor of journals of the ASA as well as for other journals in statistics and computing. He is author of Random Number Generation and Monte Carlo Methods and Matrix Algebra.

Preliminaries.- Mathematical and Statistical Preliminaries.- Statistical Computing.- Computer Storage and Arithmetic.- Algorithms and Programming.- Approximation of Functions and Numerical Quadrature.- Numerical Linear Algebra.- Solution of Nonlinear Equations and Optimization.- Generation of Random Numbers.- Methods of Computational Statistics.- Graphical Methods in Computational Statistics.- Tools for Identification of Structure in Data.- Estimation of Functions.- Monte Carlo Methods for Statistical Inference.- Data Randomization, Partitioning, and Augmentation.- Bootstrap Methods.- Exploring Data Density and Relationships.- Estimation of Probability Density Functions Using Parametric Models.- Nonparametric Estimation of Probability Density Functions.- Statistical Learning and Data Mining.- Statistical Models of Dependencies.

Reihe/Serie Statistics and Computing
Verlagsort New York
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte Bootstrap • clustering and classification • Data Analysis • Estimator • linear algebra • Monte Carlo Method • nonparametric probability density estimation • Numerical Methods • Partition • random number generation • Statistica
ISBN-10 0-387-98144-6 / 0387981446
ISBN-13 978-0-387-98144-4 / 9780387981444
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Grundkurs für Ausbildung und Praxis

von Ralf Adams

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
29,99
Das umfassende Handbuch

von Wolfram Langer

eBook Download (2023)
Rheinwerk Computing (Verlag)
37,43
Das umfassende Handbuch

von Jürgen Sieben

eBook Download (2023)
Rheinwerk Computing (Verlag)
67,43