Fourier-Mukai and Nahm Transforms in Geometry and Mathematical Physics (eBook)

eBook Download: PDF
2009 | 2009
XVI, 418 Seiten
Birkhäuser Boston (Verlag)
978-0-8176-4663-9 (ISBN)

Lese- und Medienproben

Fourier-Mukai and Nahm Transforms in Geometry and Mathematical Physics - Claudio Bartocci, Ugo Bruzzo, Daniel Hernández Ruipérez
Systemvoraussetzungen
181,89 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Integral transforms, such as the Laplace and Fourier transforms, have been major tools in mathematics for at least two centuries. In the last three decades the development of a number of novel ideas in algebraic geometry, category theory, gauge theory, and string theory has been closely related to generalizations of integral transforms of a more geometric character.

'Fourier-Mukai and Nahm Transforms in Geometry and Mathematical Physics' examines the algebro-geometric approach (Fourier-Mukai functors) as well as the differential-geometric constructions (Nahm). Also included is a considerable amount of material from existing literature which has not been systematically organized into a monograph.

Key features: Basic constructions and definitions are presented in preliminary background chapters - Presentation explores applications and suggests several open questions - Extensive bibliography and index.

This self-contained monograph provides an introduction to current research in geometry and mathematical physics and is intended for graduate students and researchers just entering this field.


Integral transforms, such as the Laplace and Fourier transforms, have been major tools in mathematics for at least two centuries. In the last three decades the development of a number of novel ideas in algebraic geometry, category theory, gauge theory, and string theory has been closely related to generalizations of integral transforms of a more geometric character."e;Fourier Mukai and Nahm Transforms in Geometry and Mathematical Physics"e; examines the algebro-geometric approach (Fourier Mukai functors) as well as the differential-geometric constructions (Nahm). Also included is a considerable amount of material from existing literature which has not been systematically organized into a monograph.Key features: Basic constructions and definitions are presented in preliminary background chapters - Presentation explores applications and suggests several open questions - Extensive bibliography and index.This self-contained monograph provides an introduction to current research in geometry and mathematical physics and is intended for graduate students and researchers just entering this field.

Contents 6
Preface 12
Acknowledgments 16
Integral functors 18
Introduction 18
1.1 Notation and preliminary results 19
1.2 First properties of integral functors 22
1.3 Fully faithful integral functors 32
1.4 The equivariant case 41
1.5 Notes and further reading 47
Fourier-Mukai functors 48
Introduction 48
2.1 Spanning classes and equivalences 49
2.2 Orlov's representability theorem 61
2.3 Fourier-Mukai functors 77
2.4 Notes and further reading 95
Fourier-Mukai on Abelian varieties 97
Introduction 97
3.1 Abelian varieties 98
3.2 The transform 100
3.3 Homogeneous bundles 106
3.4 Fourier-Mukai transform and the geometry of Abelian varieties 107
3.5 Some applications of the Abelian Fourier-Mukai transform 113
3.6 Notes and further reading 124
Fourier-Mukai on K3 surfaces 126
Introduction 126
4.1 K3 surfaces 127
4.2 Moduli spaces of sheaves and integral functors 131
4.3 Examples of transforms 137
4.4 Preservation of stability 154
4.5 Hilbert schemes of points on re 
157 
4.6 Notes and further reading 160
Nahm transforms 162
Introduction 162
5.1 Basic notions 163
5.2 The Nahm transform for instantons 173
5.3 Compatibility between Nahm and Fourier-Mukai 180
5.4 Nahm transforms on hyperkähler manifolds 188
5.5 Notes and further reading 196
Relative Fourier-Mukai functors 198
Introduction 198
6.1 Relative integral functors 199
6.2 Weierstraß fibrations 204
6.3 Relatively minimal elliptic surfaces 219
6.4 Relative moduli spaces for Weierstraß elliptic fibrations 223
6.5 Spectral covers 232
6.6 Absolutely stable sheaves on Weierstraß fibrations 235
6.7 Notes and further reading 246
Fourier-Mukai partners and birational geometry 248
Introduction 248
7.1 Preliminaries 249
7.2 Integral functors for quotient varieties 253
7.3 Fourier-Mukai partners of algebraic curves 257
7.4 Fourier-Mukai partners of algebraic surfaces 257
7.5 Derived categories and birational geometry 272
7.6 McKay correspondence 290
7.7 Notes and further reading 294
Derived and triangulated categories 296
A.1 Basic notions 296
A.2 Additive and Abelian categories 298
A.3 Categories of complexes 302
A.4 Derived categories 310
Lattices 353
B.1 Preliminaries 353
B.2 The discriminant group 355
B.3 Primitive embeddings 356
Miscellaneous results 360
C.1 Relative duality 360
C.2 Pure sheaves and Simpson stability 364
C.3 Fitting ideals 368
Stability conditions for derived categories 372
D.1 Introduction 372
D.2 Bridgeland's stability conditions 375
D.3 Stability conditions on K3 surfaces 386
D.4 Moduli stacks and invariants of semistable objects on K3 surfaces 398
References 409
Subject Index 431

Erscheint lt. Verlag 12.6.2009
Reihe/Serie Progress in Mathematics
Progress in Mathematics
Zusatzinfo XVI, 418 p. 83 illus.
Verlagsort Boston
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik
Naturwissenschaften Physik / Astronomie Allgemeines / Lexika
Technik
Schlagworte birational geometry • Fourier-Mukai partners • Gauge Theory • Integral functors • Mathematical Physics • Nahm transforms • Partial differential equations • Stability conditions
ISBN-10 0-8176-4663-9 / 0817646639
ISBN-13 978-0-8176-4663-9 / 9780817646639
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
für Studierende der Natur- und Ingenieurwissenschaften

von Heribert Stroppe; Peter Streitenberger; Eckard Specht

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
39,99