Springer Handbook of Automation (eBook)

Shimon Y. Nof (Herausgeber)

eBook Download: PDF
2009 | 2009
LXXVI, 1812 Seiten
Springer Berlin (Verlag)
978-3-540-78831-7 (ISBN)

Lese- und Medienproben

Springer Handbook of Automation -
Systemvoraussetzungen
362,73 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This handbook incorporates new developments in automation. It also presents a widespread and well-structured conglomeration of new emerging application areas, such as medical systems and health, transportation, security and maintenance, service, construction and retail as well as production or logistics. The handbook is not only an ideal resource for automation experts but also for people new to this expanding field.



Shimon Y. Nof is Professor of Industrial Engineering at Purdue University, since 1977, and Director of the NSF and industry funded PRISM Center for Production, Robotics, and Integration Software for Manufacturing & Management (established 1991) whose motto is: 'Knowledge Through Information, Wisdom Through Collaboration' and the PGRN, PRISM Global Research Network. He earned his BSc and MSc in Industrial Engineering & Management, Technion, Israel Institute of Technology, specializing in human-machine systems; his PhD in Industrial & Operations Engineering, University of Michigan, specializing in automation of facilities design; Dr. h.c. from the University of Sibiu, Romania.

He has over eight years of experience in full-time industrial and governmental positions, and has been a visiting professor at MIT and at universities in Chile, Europe, Hong Kong, Israel, Japan, and Mexico. Currently, he is the President of IFPR, the International Foundation of Production Research, he served as IFPR Secretary General during 1993-2007; recent Chair, Coordinating Committee on Manufacturing and Logistics Systems (CC5) of IFAC, the International Federation of Automatic Control. Professor Nof pioneered knowledge-based computer-aided facility design and control models, robot ergonomics, and collaborative control theory.

Professor Nof is the author, co-author and editor of ten books, including the Handbook of Industrial Robotics 1st and 2nd editions, the International Encyclopedia of Robotics, Information and Collaboration Models of Integration, and Industrial Assembly. In addition, he has published over 130 refereed journal articles and over 300 conference articles and book chapters. Among his honors, he is a Fellow of The Institute of Industrial Engineering, recipient of the Joseph Engelberger Award and Medal for Robotics Education, and Member of the Inaugural Book of Great Teachers of Purdue University. He is the editor of the new Springer Book Series on ACES, Automation, Collaboration, and E-Services.

Shimon Y. Nof is Professor of Industrial Engineering at Purdue University, since 1977, and Director of the NSF and industry funded PRISM Center for Production, Robotics, and Integration Software for Manufacturing & Management (established 1991) whose motto is: "Knowledge Through Information, Wisdom Through Collaboration" and the PGRN, PRISM Global Research Network. He earned his BSc and MSc in Industrial Engineering & Management, Technion, Israel Institute of Technology, specializing in human-machine systems; his PhD in Industrial & Operations Engineering, University of Michigan, specializing in automation of facilities design; Dr. h.c. from the University of Sibiu, Romania. He has over eight years of experience in full-time industrial and governmental positions, and has been a visiting professor at MIT and at universities in Chile, Europe, Hong Kong, Israel, Japan, and Mexico. Currently, he is the President of IFPR, the International Foundation of Production Research, he served as IFPR Secretary General during 1993-2007; recent Chair, Coordinating Committee on Manufacturing and Logistics Systems (CC5) of IFAC, the International Federation of Automatic Control. Professor Nof pioneered knowledge-based computer-aided facility design and control models, robot ergonomics, and collaborative control theory. Professor Nof is the author, co-author and editor of ten books, including the Handbook of Industrial Robotics 1st and 2nd editions, the International Encyclopedia of Robotics, Information and Collaboration Models of Integration, and Industrial Assembly. In addition, he has published over 130 refereed journal articles and over 300 conference articles and book chapters. Among his honors, he is a Fellow of The Institute of Industrial Engineering, recipient of the Joseph Engelberger Award and Medal for Robotics Education, and Member of the Inaugural Book of Great Teachers of Purdue University. He is the editor of the new Springer Book Series on ACES, Automation, Collaboration, and E-Services.

Title Pages 2
Dedication 6
Foreword 7
Preface 14
Advisory Board 17
List of Authors 22
Contents 34
List of Abbreviations 56
A Development and Impacts of Automation 71
1 Advances in Robotics and Automation: Historical Perspectives 73
References 74
2 Advances in Industrial Automation: Historical Perspectives 75
References 81
3 Automation: What It Means to Us Around the World 82
3.1 The Meaning of Automation 83
3.1.1 Definitions and Formalism 83
3.1.2 Robotics and Automation 88
3.1.3 Early Automation 91
3.1.4 Industrial Revolution 91
3.1.5 Modern Automation 92
3.1.6 Domains of Automation 93
3.2 Brief History of Automation 95
3.2.1 First Generation: Before Automatic Control (BAC) 95
3.2.2 Second Generation: Before Computer Control (BCC) 95
3.2.3 Third Generation: Automatic Computer Control (ACC) 96
3.3 Automation Cases 97
3.3.1 Case A: Steam Turbine Governor 97
3.3.2 Case B: Bioreactor 97
3.3.3 Case C: Digital Photo Processing 98
3.3.4 Case D: Robotic Painting 98
3.3.5 Case E: Assembly Automation 100
3.3.6 Case F: Computer-Integrated Elevator Production 100
3.3.7 Case G: Water Treatment 100
3.3.8 Case H: Digital Document Workflow 100
3.3.9 Case I: Ship Building Automation 101
3.3.10 Case J: Energy Power Substation Automation 102
3.4 Flexibility, Degrees, and Levels of Automation 108
3.4.1 Degree of Automation 108
3.4.2 Levels of Automation, Intelligence, and Human Variability 110
3.5 Worldwide Surveys: What Does Automation Mean to People? 112
3.5.1 How Do We Define Automation? 114
3.5.2 When and Where Did We Encounter Automation First in Our Life? 116
3.5.3 What Do We Think Is the Major Impact/Contribution of Automation to Humankind? 116
3.6 Emerging Trends 116
3.6.1 Automation Trends of the 20th and 21st Centuries 117
3.6.2 Bioautomation 117
3.6.3 Collaborative Control Theory and e-Collaboration 118
3.6.4 Risks of Automation 119
3.6.5 Need for Dependability, Survivability, Security, and Continuity of Operation 119
3.7 Conclusion 120
3.8 Further Reading 120
References 121
4 A History of Automatic Control 122
4.1 Antiquity and the Early Modern Period 122
4.2 Stability Analysis in the 19th Century 125
4.3 Ship, Aircraft and Industrial Control Before WWII 126
4.4 Electronics, Feedback and Mathematical Analysis 128
4.5 WWII and Classical Control: Infrastructure 129
4.6 WWII and Classical Control: Theory 131
4.7 The Emergence of Modern Control Theory 132
4.8 The Digital Computer 133
4.9 The Socio-Technological Context Since 1945 134
4.10 Conclusion and Emerging Trends 135
4.11 Further Reading 136
References 136
5 Social, Organizational, and Individual Impacts of Automation 139
5.1 Scope of Discussion: Long and Short Range of Man-Machine Systems 140
5.2 Short History 142
5.3 Channels of Human Impact 143
5.4 Change in Human Values 144
5.5 Social Stratification, Increased Gaps 146
5.6 Production, Economy Structures, and Adaptation 149
5.7 Education 154
5.8 Cultural Aspects 156
5.9 Legal Aspects, Ethics, Standards, and Patents 156
5.9.1 Privacy 156
5.9.2 Free Access, Licence, Patent, Copyright, Royalty, and Piracy 158
5.10 Different Media and Applications of Information Automation 158
5.11 Social Philosophy and Globalization 159
5.12 Further Reading 159
References 160
6 Economic Aspects of Automation 161
6.1 Basic Concepts in Evaluating Automation Effects 164
6.2 The Evaluation Model 165
6.2.1 Introductory Elements of Production Economy 165
6.2.2 Measure of Production Factors 165
6.2.3 The Production Function Suggested by Economics Theory 166
6.3 Effects of Automation in the Enterprise 166
6.3.1 Effects of Automation on the Production Function 166
6.3.2 Effects of Automation on Incentivization and Control of Workers 168
6.3.3 Effects of Automation on Costs Flexibility 169
6.4 Mid-Term Effects of Automation 170
6.4.1 Macroeconomics Effects of Automation: Nominal Prices and Wages 170
6.4.2 Macroeconomics Effects of Automation in the Mid-Term: Actual Wages and Natural Unemployment 173
6.4.3 Macroeconomic Effects of Automation in the Mid Term: Natural Unemployment and Technological Unemployment 175
6.5 Final Comments 179
6.6 Capital/Labor and Capital/Product Ratios in the Most Important Italian Industrial Sectors 181
References 183
7 Impacts of Automation on Precision 185
7.1 What Is Precision? 185
7.2 Precision as an Enabler of Automation 186
7.3 Automation as an Enabler of Precision 187
7.4 Cost and Benefits of Precision 187
7.5 Measures of Precision 188
7.6 Factors That Affect Precision 188
7.7 Specific Examples and Applications in Discrete Part Manufacturing 189
7.7.1 Evolution of Numerical Control and Its Effects on Machine Tools and Precision 189
7.7.2 Enablers to Improve Precision of Motion 190
7.7.3 Modeling and Predicting Machine Behavior and Machining 190
7.7.4 Correcting Machine Errors 190
7.7.5 Closed-Loop Machining (Automation-Enabled Precision) 191
7.7.6 Smart Machining 192
7.8 Conclusions and Future Trends 192
References 193
8 Trends in Automation 195
8.1 Environment 196
8.1.1 Market Requirements 196
8.1.2 Technology 197
8.1.3 Economical Trends 197
8.2 Current Trends 198
8.2.1 Integration 198
8.2.2 Optimization 206
8.3 Outlook 208
8.3.1 Complexity Increase 208
8.3.2 Controller Scope Extension 209
8.3.3 Automation Lifecycle Planning 209
8.4 Summary 210
References 210
B Automation Theory and Scientific Foundations 212
09 Control Theory for Automation: Fundamentals 214
9.1 Autonomous Dynamical Systems 215
9.2 Stability and Related Concepts 217
9.2.1 Stability of Equilibria 217
9.2.2 Lyapunov Functions 218
9.3 Asymptotic Behavior 220
9.3.1 Limit Sets 220
9.3.2 Steady-State Behavior 221
9.4 Dynamical Systems with Inputs 221
9.4.1 Input-to-State Stability (ISS) 221
9.4.2 Cascade Connections 224
9.4.3 Feedback Connections 224
9.4.4 The Steady-State Response 225
9.5 Feedback Stabilization of Linear Systems 227
9.5.1 Stabilization by Pure State Feedback 227
9.5.2 Observers and State Estimation 228
9.5.3 Stabilization via Dynamic Output Feedback 229
9.6 Feedback Stabilization of Nonlinear Systems 230
9.6.1 Recursive Methods for Global Stability 230
9.6.2 Semiglobal Stabilization via Pure State Feedback 232
9.6.3 Semiglobal Stabilization via Dynamic Output Feedback 233
9.6.4 Observers and Full State Estimation 234
9.7 Tracking and Regulation 236
9.7.1 The Servomechanism Problem 236
9.7.2 Tracking and Regulation for Linear Systems 237
9.8 Conclusion 239
References 239
10 Control Theory for Automation - Advanced Techniques 240
10.1 MIMO Feedback Systems 240
10.1.1 Transfer Function Models 242
10.1.2 State-Space Models 242
10.1.3 Matrix Fraction Description 243
10.2 All Stabilizing Controllers 243
10.3 Control Performances 248
10.3.1 Signal Norms 248
10.3.2 System Norms 249
10.4 {H_{2}} Optimal Control 250
10.4.1 State-Feedback Problem 250
10.4.2 State-Estimation Problem 251
10.4.3 Output-Feedback Problem 251
10.5 H-infinity Optimal Control 252
10.5.1 State-Feedback Problem 252
10.5.2 State-Estimation Problem 252
10.5.3 Output-Feedback Problem 253
10.6 Robust Stability and Performance 253
10.7 General Optimal Control Theory 256
10.8 Model-Based Predictive Control 258
10.9 Control of Nonlinear Systems 260
10.9.1 Feedback Linearization 260
10.9.2 Feedback Linearization Versus Linear Controller Design 262
10.9.3 Sliding-Mode Control 262
10.10 Summary 263
References 264
11 Control of Uncertain Systems 266
11.1 Background and Overview 267
11.2 Plant Model and Notation 270
11.3 Variable-Structure Neural Component 270
11.3.1 Center Grid 272
11.3.2 Adding RBFs 272
11.3.3 Removing RBFs 274
11.3.4 Uniform Grid Transformation 275
11.3.5 Remarks 275
11.4 State Feedback Controller Development 276
11.4.1 Remarks 278
11.5 Output Feedback Controller Construction 278
11.6 Examples 280
11.7 Summary 283
References 284
12 Cybernetics and Learning Automata 287
12.1 Basics 287
12.2 A Learning Automaton 289
12.3 Environment 289
12.4 Classification of Learning Automata 290
12.4.1 Deterministic Learning Automata 290
12.4.2 Stochastic Learning Automata 290
12.5 Estimator Algorithms 294
12.5.1 Rationale and Motivation 294
12.5.2 Continuous Estimator Algorithms 294
12.5.3 Discrete Estimator Algorithms 296
12.5.4 Stochastic Estimator Learning Algorithm (SELA) 297
12.6 Experiments and Application Examples 298
12.7 Emerging Trends and Open Challenges 299
12.8 Conclusions 300
References 300
13 Communication in Automation, Including Networking and Wireless 302
13.1 Basic Considerations 302
13.1.1 Why Communication Is Necessary in Automated Systems 302
13.1.2 Communication Modalities 302
13.2 Digital Communication Fundamentals 303
13.2.1 Entropy, Data Rates, and Channel Capacity 303
13.2.2 Source Encoder/Decoder Design 304
13.3 Networked Systems Communication Limitations 306
13.4 Networked Control Systems 307
13.4.1 Networked Control Systems 307
13.4.2 Teleoperation 309
13.5 Discussion and Future Research Directions 310
13.6 Conclusions 311
13.7 Appendix 311
13.7.1 Channel Encoder/Decoder Design 311
13.7.2 Digital Modulation 311
References 312
14 Artificial Intelligence and Automation 314
14.1 Methods and Application Examples 315
14.1.1 Search Procedures 315
14.1.2 Logical Reasoning 318
14.1.3 Reasoning About Uncertain Information 320
14.1.4 Planning 322
14.1.5 Games 325
14.1.6 Natural-Language Processing 327
14.1.7 Expert Systems 329
14.1.8 AI Programming Languages 329
14.2 Emerging Trends and Open Challenges 331
References 331
15 Virtual Reality and Automation 334
15.1 Overview of Virtual Reality and Automation Technologies 334
15.2 Production/Service Applications 336
15.2.1 Design 336
15.2.2 Material Handling and Manufacturing Systems 336
15.3 Medical Applications 338
15.3.1 Neurosurgical Virtual Automation 339
15.3.2 Ophthalmic Virtual Automation 340
15.3.3 Dental Virtual Automation 340
15.4 Conclusions and Emerging Trends 341
References 342
16 Automation of Mobility and Navigation 344
16.1 Historical Background 344
16.2 Basic Concepts 345
16.3 Vehicle Motion Control 348
16.4 Navigation Control and Interaction with the Environment 350
16.5 Human Interaction 353
16.6 Multiple Mobile Systems 355
16.7 Conclusions 357
References 357
17 The Human Role in Automation 360
17.1 Some Basics of Human Interaction with Automation 361
17.2 Various Application Areas 362
17.2.1 Agriculture Applications 362
17.2.2 Communications Applications 363
17.2.3 Inspection Systems Applications 363
17.2.4 Manufacturing Applications 363
17.2.5 Medical and Diagnostic Applications 363
17.2.6 Robotic Applications 363
17.2.7 Teaching Applications 364
17.3 Modern Key Issues to Consider as Humans Interact with Automation 364
17.3.1 Trust in Automation 364
17.3.2 Cost of Automation 365
17.3.3 Adaptive Versus Nonadaptive Automation 365
17.3.4 Safety in Automation 365
17.3.5 Authority in Automation 365
17.3.6 Performance of Automation Systems 366
17.3.7 When Should the Human Override the Automation? 366
17.3.8 Social Issues and Automation 366
17.4 Future Directions of Defining Human-Machine Interactions 366
17.5 Conclusions 367
References 367
18 What Can Be Automated? What Cannot Be Automated? 370
18.1 The Limits of Automation 370
18.2 The Limits of Mechanization 371
18.3 Expanding the Limit 374
18.4 The Current State of the Art 376
18.5 A General Principle 377
References 378
C Automation Design: Theory, Elements, and Methods 379
19 Mechatronic Systems - A Short Introduction 381
19.1 From Mechanical to Mechatronic Systems 381
19.2 Mechanical Systems and Mechatronic Developments 383
19.2.1 Machine Elements, Mechanical Components 383
19.2.2 Electrical Drives and Servo Systems 383
19.2.3 Power-Generating Machines 384
19.2.4 Power-Consuming Machines 384
19.2.5 Vehicles 385
19.2.6 Trains 385
19.3 Functions of Mechatronic Systems 385
19.3.1 Basic Mechanical Design 385
19.3.2 Distribution of Mechanical and Electronic Functions 385
19.3.3 Operating Properties 386
19.3.4 New Functions 386
19.3.5 Other Developments 386
19.4 Integration Forms of Processes with Electronics 387
19.5 Design Procedures for Mechatronic Systems 389
19.6 Computer-Aided Design of Mechatronic Systems 392
19.7 Conclusion and Emerging Trends 393
References 393
20 Sensors and Sensor Networks 396
20.1 Sensors 396
20.1.1 Sensing Principles 396
20.1.2 Position, Velocity, and Acceleration Sensors 398
20.1.3 Miscellaneous Sensors 399
20.1.4 Micro- and Nanosensors 399
20.2 Sensor Networks 401
20.2.1 Sensor Network Systems 401
20.2.2 Multisensor Data Fusion Methods 402
20.2.3 Sensor Network Design Considerations 404
20.2.4 Sensor Network Architectures 405
20.2.5 Sensor Network Protocols 406
20.2.6 Sensor Network Applications 408
20.3 Emerging Trends 409
20.3.1 Heterogeneous Sensors and Applications 409
20.3.2 Security 409
20.3.3 Appropriate Quality-of-Service (QoS) Model 409
20.3.4 Integration with Other Networks 409
References 410
21 Industrial Intelligent Robots 412
21.1 Current Status of the Industrial Robot Market 412
21.2 Background of the Emergence of Intelligent Robots 413
21.3 Intelligent Robots 415
21.3.1 Mechanical Structure 415
21.3.2 Control System 415
21.3.3 Vision Sensors 415
21.3.4 Force Sensors 418
21.3.5 Control Functions 419
21.3.6 Offline Programming System 420
21.3.7 Real-Time Supervisory and Control System 421
21.4 Application of Intelligent Robots 422
21.4.1 High-Speed Handling Robot 422
21.4.2 Machining Robot Cell - Integration of Intelligent Robots and Machine Tools 423
21.4.3 Assembly Robot Cell 424
21.5 Guidelines for Installing Intelligent Robots 425
21.5.1 Clarification of the Range of Automation by Intelligent Robots 425
21.5.2 Suppression of Initial Capital Investment Expense 425
21.6 Mobile Robots 425
21.7 Conclusion 426
21.8 Further Reading 426
References 426
22 Modeling and Software for Automation 427
22.1 Model-Driven Versus Reuse-Driven Software Development 428
22.2 Model-Driven Software Development 430
22.2.1 The Matlab Suite (Matlab/Simulink/Stateflow, Real-Time Workshop Embedded Coder) 430
22.2.2 Synchronous and Related Languages 431
22.2.3 Other Domain-Specific Languages 432
22.2.4 Example: Software for Autonomous Helicopter Project 433
22.3 Reuse-Driven Software Development 433
22.3.1 The Product Family Approach 433
22.3.2 The Software Framework Approach 434
22.3.3 Software Frameworks and Adaptability 435
22.3.4 An Example: The OBS Framework 437
22.4 Current Research Directions 438
22.4.1 Automated Instantiation Environments 438
22.4.2 Model-Level Reuse 439
22.5 Conclusions and Emerging Trends 441
References 441
23 Real-Time Autonomic Automation 443
23.1 Theory 444
23.1.1 Dig into the Subject 444
23.1.2 Optimization: Linear Programming Versus Software Agents 445
23.1.3 Classification of Agent-Based Solutions 446
23.1.4 Self-Management 447
23.2 Application Example: Modular Production Machine Control 447
23.2.1 Motivation 447
23.2.2 Case Environment 448
23.2.3 Solution Design 449
23.2.4 Advantages and Benefits 451
23.2.5 Future Developments and Open Issues 453
23.2.6 Reusability 453
23.3 Application Example: Dynamic Transportation Optimization 453
23.3.1 Motivation 453
23.3.2 Business Domain 454
23.3.3 Solution Concept 456
23.3.4 Benefits and Savings 458
23.3.5 Emerging Trends: Pervasive Technologies 460
23.3.6 Future Developments and Open Issues 463
23.4 How to Design Agent-Oriented Solutions for Autonomic Automation 464
23.5 Emerging Trends and Challenges 464
23.5.1 Virtual Production and the Digital Factory 464
23.5.2 Modularization 465
23.5.3 More RFID, More Sensors, Data Flooding 465
23.5.4 Pervasive Technologies 465
References 466
24 Automation Under Service-Oriented Grids 467
24.1 Emergence of Virtual Service-Oriented Grids 468
24.2 Virtualization 468
24.2.1 Virtualization Usage Models 469
24.3 Service Orientation 470
24.3.1 Service-Oriented Architectural Tenets 471
24.3.2 Services Needed for Virtual Service-Oriented Grids 472
24.4 Grid Computing 476
24.5 Summary and Emerging Challenges 476
24.6 Further Reading 477
References 478
25 Human Factors in Automation Design 479
25.1 Automation Problems 480
25.1.1 Problems Due to Changes in Feedback 480
25.1.2 Problems Due to Changes in Tasks and Task Structure 481
25.1.3 Problems Due to Operators' Cognitive and Emotional Response to Changes 482
25.2 Characteristics of the System and the Automation 484
25.2.1 Automation as Information Processing Stages 485
25.2.2 Complexity and Observability 485
25.2.3 Time-Scale and Multitasking Demands 486
25.2.4 Agent Interdependencies 486
25.2.5 Environment Interactions 486
25.3 Application Examples and Approaches to Automation Design 486
25.3.1 Fitts' List and Function Allocation 487
25.3.2 Operator-Automation Simulation 487
25.3.3 Enhanced Feedback and Representation Aiding 488
25.3.4 Expectation Matching and Simplification 490
25.4 Future Challenges in Automation Design 491
25.4.1 Swarm Automation 492
25.4.2 Operator-Automation Networks 492
References 494
26 Collaborative Human-Automation Decision Making 499
26.1 Background 500
26.2 The Human-Automation Collaboration Taxonomy (HACT) 501
26.2.1 Three Basic Roles 502
26.2.2 Characterizing Human Supervisory Control System Collaboration 504
26.3 HACT Application and Guidelines 504
26.4 Conclusion and Open Challenges 507
References 508
27 Teleoperation 510
27.1 Historical Background and Motivation 511
27.2 General Scheme and Components 512
27.2.1 Operation Principle 515
27.3 Challenges and Solutions 515
27.3.1 Control Algorithms 515
27.3.2 Communication Channels 516
27.3.3 Sensory Interaction and Immersion 517
27.3.4 Teleoperation Aids 518
27.3.5 Dexterous Telemanipulation 519
27.4 Application Fields 520
27.4.1 Industry and Construction 520
27.4.2 Mining 521
27.4.3 Underwater 521
27.4.4 Space 522
27.4.5 Surgery 523
27.4.6 Assistance 524
27.4.7 Humanitarian Demining 524
27.4.8 Education 525
27.5 Conclusion and Trends 525
References 526
28 Distributed Agent Software for Automation 530
28.1 Composite Curing Background 532
28.2 Industrial Agent Architecture 534
28.2.1 Agent Design and Partitioning Perspective 535
28.2.2 Agent Tool 536
28.3 Building Agents for the Curing System 536
28.4 Autoclave and Thermocouple Agents 538
28.4.1 Autoclave Agent 538
28.4.2 Thermocouple Agent 539
28.5 Agent-Based Simulation 539
28.6 Composite Curing Results and Recommendations 541
28.6.1 Designing the Validation System 541
28.6.2 Modeling Process Dynamics 542
28.6.3 Timing and Stability Criteria 545
28.7 Conclusions 545
28.8 Further Reading 545
References 546
29 Evolutionary Techniques for Automation 548
29.1 Evolutionary Techniques 549
29.1.1 Genetic Algorithm 550
29.1.2 Multiobjective Evolutionary Algorithm 551
29.1.3 Evolutionary Design Automation 552
29.2 Evolutionary Techniques for Industrial Automation 553
29.2.1 Factory Automation 553
29.2.2 Planning and Scheduling Automation 554
29.2.3 Manufacturing Automation 554
29.2.4 Logistics and Transportation Automation 554
29.3 AGV Dispatching in Manufacturing System 555
29.3.1 Network Modeling for AGV Dispatching 555
29.3.2 Evolutionary Approach: Priority-Based GA 556
29.3.3 Case Study 557
29.4 Robot-Based Assembly-Line System 558
29.4.1 Assembly-Line Balancing Problems 558
29.4.2 Robot-Based Assembly-Line Model 558
29.4.3 Hybrid Genetic Algorithm 559
29.4.4 Case Study 562
29.5 Conclusions and Emerging Trends 562
29.6 Further Reading 562
References 562
30 Automating Errors and Conflicts Prognostics and Prevention 564
30.1 Definitions 564
30.2 Error Prognostics and Prevention Applications 567
30.2.1 Error Detection in Assembly and Inspection 567
30.2.2 Process Monitoring and Error Management 567
30.2.3 Hardware Testing Algorithms 568
30.2.4 Error Detection in Software Design 570
30.2.5 Error Detection and Diagnostics in Discrete-Event Systems 571
30.2.6 Error Detection in Service and Healthcare Industries 572
30.2.7 Error Detection and Prevention Algorithms for Production and Service Automation 572
30.2.8 Error-Prevention Culture (EPC) 573
30.3 Conflict Prognostics and Prevention 573
30.4 Integrated Error and Conflict Prognostics and Prevention 574
30.4.1 Active Middleware 574
30.4.2 Conflict and Error Detection Model 575
30.4.3 Performance Measures 576
30.5 Error Recovery and Conflict Resolution 576
30.5.1 Error Recovery 576
30.5.2 Conflict Resolution 581
30.6 Emerging Trends 581
30.6.1 Decentralized and Agent-Based Error and Conflict Prognostics and Prevention 581
30.6.2 Intelligent Error and Conflict Prognostics and Prevention 582
30.6.3 Graph and Network Theories 582
30.6.4 Financial Models for Prognostics Economy 582
30.7 Conclusion 582
References 583
D Automation Design: Theory and Methods for Integration 587
31 Process Automation 589
31.1 Enterprise View of Process Automation 589
31.1.1 Measurement and Actuation (Level 1) 589
31.1.2 Safety and Environmental/ Equipment Protection (Level 2) 589
31.1.3 Regulatory Control (Level 3a) 590
31.1.4 Multivariable and Constraint Control (Level 3b) 590
31.1.5 Real-Time Optimization (Level 4) 590
31.1.6 Planning and Scheduling (Level 5) 591
31.2 Process Dynamics and Mathematical Models 591
31.3 Regulatory Control 593
31.4 Control System Design 594
31.4.1 Multivariable Control 595
31.5 Batch Process Automation 598
31.6 Automation and Process Safety 601
31.7 Emerging Trends 603
31.8 Further Reading 603
References 603
32 Product Automation 604
32.1 Historical Background 604
32.2 Definition of Product Automation 605
32.3 The Functions of Product Automation 605
32.4 Sensors 606
32.5 Control Systems 606
32.6 Actuators 607
32.7 Energy Supply 607
32.8 Information Exchange with Other Systems 607
32.9 Elements for Product Automation 607
32.9.1 Sensors and Instrumentation 607
32.9.2 Circuit Breakers 609
32.9.3 Motors 610
32.9.4 Drives 611
32.9.5 Robots 612
32.10 Embedded Systems 613
32.11 Summary and Emerging Trends 616
References 617
33 Service Automation 618
33.1 Definition of Service Automation 618
33.2 Life Cycle of a Plant 618
33.3 Key Tasks and Features of Industrial Service 619
33.4 Real-Time Performance Monitoring 621
33.5 Analysis of Performance 622
33.6 Information Required for Effective and Efficient Service 622
33.7 Logistics Support 625
33.8 Remote Service 626
33.9 Tools for Service Personnel 627
33.10 Emerging Trends: Towards a Fully Automated Service 627
References 628
34 Integrated Human and Automation Systems 629
34.1 Basics and Definitions 630
34.1.1 Work Design 630
34.1.2 Technical and Technological Work Design 631
34.1.3 Work System 632
34.1.4 Man-Machine System 632
34.1.5 Man-Machine Interaction 634
34.1.6 Automation 634
34.1.7 Automation Technology 634
34.1.8 Assisting Systems 635
34.1.9 The Working Man 635
34.2 Use of Automation Technology 637
34.2.1 Production Automation 637
34.2.2 Process Automation 639
34.2.3 Automation of Office Work 639
34.2.4 Building Automation 640
34.2.5 Traffic Control 640
34.2.6 Vehicle Automation 641
34.3 Design Rules for Automation 643
34.3.1 Goal System for Work Design 643
34.3.2 Approach to the Development and Design of Automated Systems 643
34.3.3 Function Division and Work Structuring 645
34.3.4 Designing a Man-Machine Interface 645
34.3.5 Increase of Occupational Safety 650
34.4 Emerging Trends and Prospects for Automation 652
34.4.1 Innovative Systems and Their Application 652
34.4.2 Change of Human Life and Work Conditions 653
References 654
35 Machining Lines Automation 657
35.1 Machining Lines 658
35.1.1 Dedicated Transfer Lines 658
35.1.2 Flexible Transfer Lines 659
35.1.3 Reconfigurable Transfer Lines 660
35.2 Machining Line Design 661
35.2.1 Challenges 661
35.2.2 General Methodology 662
35.3 Line Balancing 663
35.4 Industrial Case Study 664
35.4.1 Description of the Case Study 664
35.4.2 Mixed Integer Programming (MIP) 666
35.4.3 Computing Ranges for Variables 668
35.4.4 Reconfiguration of the Line 672
35.5 Conclusion and Perspectives 673
References 674
36 Large-Scale Complex Systems 676
36.1 Background and Scope 677
36.1.1 Approaches 678
36.1.2 History 679
36.2 Methods and Applications 679
36.2.1 Hierarchical Systems Approach 679
36.2.2 Other Methods and Applications 683
36.3 Case Studies 689
36.3.1 Case Study 1: Pulp Mill Production Scheduling 689
36.3.2 Case Study 2: Decision Support in Complex Disassembly Lines 690
36.3.3 Case Study 3: Time Delay Estimation in Large-Scale Complex Systems 691
36.4 Emerging Trends 691
References 692
37 Computer-Aided Design, Computer-Aided Engineering, and Visualization 696
37.1 Modern CAD Tools 696
37.2 Geometry Creation Process 697
37.3 Characteristics of the Modern CAD Environment 699
37.4 User Characteristics Related to CAD Systems 700
37.5 Visualization 701
37.6 3-D Animation Production Process 702
37.6.1 Concept Development and Preproduction 702
37.6.2 Production 703
37.6.3 Postproduction 707
References 708
38 Design Automation for Microelectronics 710
38.1 Overview 710
38.1.1 Background on Microelectronic Circuits 710
38.1.2 History of Electronic Design Automation 713
38.2 Techniques of Electronic Design Automation 714
38.2.1 System-Level Design 714
38.2.2 Typical Design Flow 715
38.2.3 Verification and Testing 719
38.2.4 Technology CAD 720
38.2.5 Design for Low Power 721
38.3 New Trends and Conclusion 722
References 724
39 Safety Warnings for Automation 728
39.1 Warning Roles 729
39.1.1 Warning as a Method of Hazard Control 729
39.1.2 Warning as a Form of Automation 731
39.2 Types of Warnings 733
39.2.1 Static Versus Dynamic Warnings 733
39.2.2 Warning Sensory Modality 735
39.3 Models of Warning Effectiveness 737
39.3.1 Warning Effectiveness Measures 737
39.3.2 The Warning Compliance Hypothesis 737
39.3.3 Information Quality 738
39.3.4 Information Integration 739
39.3.5 The Value of Warning Information 739
39.3.6 Team Decision Making 740
39.3.7 Time Pressure and Stress 740
39.4 Design Guidelines and Requirements 741
39.4.1 Hazard Identification 741
39.4.2 Legal Requirements 742
39.4.3 Voluntary Standards 744
39.4.4 Design Specifications 744
39.5 Challenges and Emerging Trends 747
References 748
E Automation Management 753
40 Economic Rationalization of Automation Projects 755
40.1 General Economic Rationalization Procedure 756
40.1.1 General Procedure for Automation Systems Project Rationalization 756
40.1.2 Pre-Cost-Analysis Phase 757
40.1.3 Cost-Analysis Phase 760
40.1.4 Additional Considerations 763
40.2 Alternative Approach to the Rationalization of Automation Projects 764
40.2.1 Issues in Strategic Justification of Advanced Technologies 764
40.2.2 Analytical Hierarchy Process (AHP) 764
40.3 Future Challenges and Emerging Trends in Automation Rationalization 767
40.3.1 Adjustment of Minimum Acceptable Rate of Return in Proportion to Perceived Risk 767
40.3.2 Depreciation and Salvage Value Profiles 768
40.4 Conclusions 768
References 769
41 Quality of Service (QoS) of Automation 770
41.1 Cost-Oriented Automation 773
41.1.1 Cost of Ownership 773
41.1.2 Robotics 774
41.2 Affordable Automation 776
41.2.1 Smart Devices 776
41.2.2 Programmable Logic Controllers as Components for Affordable Automation 777
41.2.3 Production Technology 778
41.3 Energy-Saving Automation 780
41.3.1 Energy Generation 780
41.3.2 Residential Sector 781
41.3.3 Commercial Building Sector 781
41.3.4 Transportation Sector 782
41.3.5 Industrial Sector 782
41.4 Emerging Trends 783
41.4.1 Distributed Collaborative Engineering 783
41.4.2 e-Maintenance and e-Service 785
41.5 Conclusions 786
References 787
42 Reliability, Maintainability, and Safety 789
42.1 Definitions 790
42.2 RMS Engineering 792
42.2.1 Predictive RMS Assessment 792
42.2.2 Towards a Safe Engineering Process for RMS 793
42.3 Operational Organization and Architecture for RMS 795
42.3.1 Integrated Control and Monitoring Systems 795
42.3.2 Integrated Control, Maintenance, and Technical Management Systems 797
42.3.3 Remote and e-Maintenance 797
42.3.4 Industrial Applications 799
42.4 Challenges, Trends, and Open Issues 799
References 800
43 Product Lifecycle Management and Embedded Information Devices 802
43.1 The Concept of Closed-Loop PLM 802
43.2 The Components of a Closed-Loop PLM System 804
43.2.1 Product Embedded Information Device (PEID) 804
43.2.2 Middleware 806
43.2.3 Decision Support System (DSS) 806
43.2.4 Product Knowledge and Management System (PDKM) 807
43.3 A Development Guide for Your Closed-Loop PLM Solution 808
43.3.1 Modeling 808
43.3.2 Selection of PEID System 809
43.3.3 Data and Data Flow Definition 811
43.3.4 PDKM, DSS and Middleware 812
43.4 Closed-Loop PLM Application 814
43.4.1 ELV Information and PEID Technology 815
43.4.2 Decision Flow 815
43.5 Emerging Trends and Open Challenges 816
References 817
44 Education and Qualification for Control and Automation 819
44.1 The Importance of Automatic Control in the 21st Century 820
44.2 New Challenges for Education 820
44.3 Interdisciplinary Nature of Stochastic Control 821
44.4 New Applications of Systems and Control Theory 822
44.4.1 Financial Engineering and Financial Mathematics 822
44.4.2 Biomedical Models: Epilepsy Model 823
44.5 Pedagogical Approaches 824
44.5.1 Coursework 824
44.5.2 Laboratories as Interactive Learning Environments 825
44.5.3 Plain Talk on Control for a Wide Range of the Public 826
44.5.4 New Approaches to Cultivating Students Interest in Math, Science, Engineering, and Technology at K-12 Level 826
44.6 Integrating Scholarship, Teaching, and Learning 827
44.7 The Scholarship of Teaching and Learning 827
44.8 Conclusions and Emerging Challenges 828
References 828
45 Software Management 831
45.1 Automation and Software Management 831
45.1.1 Software Engineering and Software Management 832
45.2 Software Distribution 833
45.2.1 Overview of Software Distribution/Software Delivery 833
45.2.2 Software Distribution in MS Configuration Manager 2007 834
45.2.3 On-Demand Software 837
45.2.4 Electronic Software Delivery 838
45.3 Asset Management 838
45.3.1 Software Asset Management and Optimization 838
45.3.2 The Applications Inventory or Asset Portfolio 839
45.3.3 Software Asset Management Tools 839
45.3.4 Managing Corporate Laptops and Their Software 840
45.3.5 Licence Compliance Issues and Benefits 840
45.3.6 Emerging Trends and Future Challenges 841
45.4 Cost Estimation 841
45.4.1 Estimating Project Scope 841
45.4.2 Cost Estimating for Large Projects 841
45.4.3 Requirements-Based a priori Estimates 843
45.4.4 Training Developers to Make Good Estimates 843
45.4.5 Software Tools for Software Development Estimates 844
45.4.6 Emerging Trends and Future Challenges 845
45.5 Further Reading 846
References 846
46 Practical Automation Specification 848
46.1 Overview 848
46.2 Intention 849
46.2.1 Encapsulation 849
46.2.2 Generalization (Inheritance) 850
46.2.3 Reusability 850
46.2.4 Interchangeability 850
46.2.5 Interoperability 851
46.3 Strategy 851
46.3.1 Device Drivers 851
46.3.2 Equipment Blocks 852
46.3.3 Communication 853
46.3.4 Rules 853
46.4 Implementation 854
46.5 Additional Impacts 854
46.5.1 Vertical Integration and Views 854
46.5.2 Testing 855
46.5.3 Simulation 855
46.6 Example 855
46.6.1 System 857
46.6.2 Impacts 858
46.6.3 Succession 858
46.7 Conclusion 858
46.8 Further Reading 858
References 859
47 Automation and Ethics 860
47.1 Background 861
47.2 What Is Ethics, and How Is It Related to Automation? 861
47.3 Dimensions of Ethics 862
47.3.1 Automation Security 864
47.3.2 Ethics Case Studies 865
47.4 Ethical Analysis and Evaluation Steps 865
47.4.1 Ethics Principles 867
47.4.2 Codes of Ethics 868
47.5 Ethics and STEM Education 868
47.5.1 Preparing the Future Workforce and Service-Force 869
47.5.2 Integrating Social Responsibility and Sensitivity into Education 869
47.5.3 Dilemma-Based Learning 870
47.5.4 Model-Based Approach to Teaching Ethics and Automation (Learning) 871
47.6 Ethics and Research 873
47.6.1 Internet-Based Research 873
47.6.2 More on Research Ethics and User Privacy Issues 874
47.7 Challenges and Emerging Trends 876
47.7.1 Trends and Challenges 876
47.8 Additional Online Resources 877
47.A Appendix: Code of Ethics Example 878
47.A.1 General Moral Imperatives 878
47.A.2 More Specific Professional Responsibilities 880
47.A.3 Organizational Leadership Imperatives 881
47.A.4 Compliance with the Code 882
References 882
F Industrial Automation 885
48 Machine Tool Automation 887
48.1 The Advent of the NC Machine Tool 889
48.1.1 From Hand Tool to Powered Machine 889
48.1.2 Copy Milling Machine 890
48.1.3 NC Machine Tools 890
48.2 Development of Machining Center and Turning Center 891
48.2.1 Machining Center 891
48.2.2 Turning Center 893
48.2.3 Fully Automated Machining: FMS and FMC 893
48.3 NC Part Programming 894
48.3.1 Manual Part Programming 895
48.3.2 Computer-Assisted Part Programming: APT and EXAPT 896
48.3.3 CAM-Assisted Part Programming 896
48.4 Technical Innovation in NC Machine Tools 897
48.4.1 Functional and Structural Innovation by Multitasking and Multiaxis 897
48.4.2 Innovation in Control Systems Toward Intelligent CNC Machine Tools 898
48.4.3 Current Technologies of Advanced CNC Machine Tools 899
48.4.4 Autonomous and Intelligent Machine Tool 903
48.5 Key Technologies for Future Intelligent Machine Tool 906
48.6 Further Reading 907
References 907
49 Digital Manufacturing and RFID-Based Automation 908
49.1 Overview 908
49.2 Digital Manufacturing Based on Virtual Manufacturing (VM) 909
49.2.1 Concept of VM 909
49.2.2 Key Technologies Involved in VM 910
49.2.3 Some Typical Applications of VM 911
49.2.4 Benefits Derived from VM 912
49.3 Digital Manufacturing by RFID-Based Automation 913
49.3.1 Key RFID Technologies 914
49.3.2 Applications of RFID-Based Automation in Digital Manufacturing 916
49.4 Case Studies of Digital Manufacturing and RFID-Based Automation 916
49.4.1 Design of Assembly Line and Processes for Motor Assembly 916
49.4.2 A VM System for the Design and the Manufacture of Precision Optical Products 917
49.4.3 Physical Asset Management (PAM) 918
49.4.4 Warehouse Management 921
49.4.5 Information Interchange in Global Production Networks 923
49.4.6 WIP Tracking 925
49.5 Conclusions 926
References 927
50 Flexible and Precision Assembly 929
50.1 Flexible Assembly Automation 929
50.1.1 Feeding Parts 930
50.1.2 Grasping Parts 931
50.1.3 Flexible Fixturing 933
50.2 Small Parts 934
50.2.1 Aligning Small Parts 934
50.2.2 Fastening Small Parts 934
50.3 Automation Software Architecture 935
50.3.1 Basic Control and Procedural Features 935
50.3.2 Coordinate System Manipulation 935
50.3.3 Sensor Interfaces and Sensor Processing 936
50.3.4 Communications Support and Messaging 936
50.3.5 Geometric Modeling 936
50.3.6 Application Error Monitoring and Branching 937
50.3.7 Safety Features 937
50.3.8 Simulation and Planning 937
50.3.9 Pooling Resources and Knowledge 938
50.4 Conclusions and Future Challenges 938
50.5 Further Reading 938
References 938
51 Aircraft Manufacturing and Assembly 940
51.1 Aircraft Manufacturing and Assembly Background 941
51.2 Automated Part Fabrication Systems: Examples 942
51.2.1 N/C Machining of Metallic Components 942
51.2.2 Stretch Forming Machine for Aluminum Skins 944
51.2.3 Chemical Milling and Trimming Systems for Aluminum Skins 945
51.2.4 Superplastic Forming (SPF) and Superplastic Forming/Diffusion Bonding (SPF/DB) 946
51.2.5 Automated Composite Cutting Systems 947
51.2.6 Automated Tape Layup Machine 948
51.2.7 Automated Fiber Placement Machine 949
51.3 Automated Part Inspection Systems: Examples 950
51.3.1 X-ray Inspection Systems 950
51.3.2 Ultrasonic Inspection Systems 951
51.4 Automated Assembly Systems/Examples 952
51.4.1 C-Frame Fastening Machine 953
51.4.2 Ring Riveter for Fuselage Half-Shell Assembly 953
51.4.3 Airplane Moving Line Assembly 954
51.5 Concluding Remarks and Emerging Trends 955
References 956
52 Semiconductor Manufacturing Automation 958
52.1 Historical Background 958
52.2 Semiconductor Manufacturing Systems and Automation Requirements 959
52.2.1 Wafer Fabrication and Assembly Processes 959
52.2.2 Automation Requirements for Modern Fabs 960
52.3 Equipment Integration Architecture and Control 961
52.3.1 Tool Architectures and Operational Requirements 961
52.3.2 Tool Science: Scheduling and Control 962
52.3.3 Control Software Architecture, Design, and Development 966
52.4 Fab Integration Architectures and Operation 968
52.4.1 Fab Architecture and Automated Material-Handling Systems 968
52.4.2 Communication Architecture and Networking 969
52.4.3 Fab Control Application Integration 969
52.4.4 Fab Control and Management 971
52.4.5 Other Fab Automation Technologies 971
52.5 Conclusion 972
References 972
53 Nanomanufacturing Automation 974
53.1 Overview 974
53.2 AFM-Based Nanomanufacturing 977
53.2.1 Modeling of the Nanoenvironments 977
53.2.2 Methods of Nanomanipulation Automation 977
53.2.3 Automated Local Scanning Method for Nanomanipulation Automation 982
53.2.4 CAD Guided Automated Nanoassembly 984
53.3 Nanomanufacturing Processes 984
53.3.1 Dielectrophoretic Force on Nanoobjects 985
53.3.2 Separating CNTs by an Electronic Property Using the Dielectrophoretic Effect 986
53.3.3 DEP Microchamber for Separating CNTs 986
53.3.4 Automated Robotic CNT Deposition Workstation 987
53.3.5 CNT-Based Infrared Detector 991
53.4 Conclusions 991
References 991
54 Production, Supply, Logistics and Distribution 994
54.1 Historical Background 994
54.2 Machines and Equipment Automation for Production 996
54.2.1 Production Equipment and Machinery 996
54.2.2 Material Handling and Storage for Production and Distribution 996
54.2.3 Process Control Systems in Production 997
54.3 Computing and Communication Automation for Planning and Operations Decisions 998
54.3.1 Supply Chain Planning 998
54.3.2 Production Planning and Programming 999
54.3.3 Logistic Execution Systems 1000
54.3.4 Customer-Oriented Systems 1000
54.4 Automation Design Strategy 1001
54.4.1 Labor Costs and Automation Economics 1001
54.4.2 The Role of Simulation Software 1001
54.4.3 Balancing Agility, Flexibility, and Productivity 1001
54.5 Emerging Trends and Challenges 1002
54.5.1 RFID Technology in Supply Chain and Networks 1002
54.6 Further Reading 1005
References 1006
55 Material Handling Automation in Production and Warehouse Systems 1007
55.1 Material Handling Integration 1008
55.1.1 Basic Concept and Configuration 1008
55.2 System Architecture 1010
55.2.1 Material Management System 1011
55.3 Advanced Technologies 1015
55.3.1 Information Interface Technology (IIT) with Wireless Technology 1015
55.3.2 Design Methodologies for MHA 1017
55.3.3 Control Methodologies for MHA 1018
55.3.4 AI and OR Techniques for MHA 1021
55.4 Conclusions and Emerging Trends 1023
References 1023
56 Industrial Communication Protocols 1026
56.1 Basic Information 1026
56.1.1 History 1026
56.1.2 Classification 1027
56.1.3 Requirements in Industrial Automation Networks 1027
56.1.4 Chapter Overview 1027
56.2 Virtual Automation Networks 1028
56.2.1 Definition, Characterization, Architectures 1028
56.2.2 Domains 1028
56.2.3 Interfaces, Network Transitions, Transmission Technologies 1029
56.3 Wired Industrial Communications 1029
56.3.1 Introduction 1029
56.3.2 Sensor/Actuator Networks 1030
56.3.3 Fieldbus Systems 1031
56.3.4 Controller Networks 1033
56.4 Wireless Industrial Communications 1036
56.4.1 Basic Standards 1036
56.4.2 Wireless Local Area Networks (WLAN) 1037
56.4.3 Wireless Sensor/Actuator Networks 1037
56.5 Wide Area Communications 1038
56.6 Conclusions 1040
56.7 Emerging Trends 1040
56.8 Further Reading 1042
56.8.1 Books 1042
56.8.2 Various Communication Standards 1042
56.8.3 Various web Sites of Fieldbus Organizations and Wireless Alliances 1042
References 1043
57 Automation and Robotics in Mining and Mineral Processing 1045
57.1 Background 1045
57.2 Mining Methods and Application Examples 1048
57.3 Processing Methods and Application Examples 1049
57.3.1 Grinding Control 1049
57.3.2 Flotation 1051
57.4 Emerging Trends 1053
57.4.1 Teleremote Equipment 1053
57.4.2 Evaluation of Teleoperated Mining 1055
57.4.3 Future Trends in Grinding and Flotation Control 1055
References 1056
58 Automation in the Wood and Paper Industry 1058
58.1 Background Development and Theory 1058
58.2 Application Example, Guidelines, and Techniques 1061
58.2.1 Timber Industry 1061
58.2.2 Paper-Making Industry 1066
58.3 Emerging Trends, Open Challenges 1067
References 1068
59 Welding Automation 1070
59.1 Principal Definitions 1070
59.2 Welding Processes 1071
59.2.1 Arc Welding 1071
59.2.2 Resistance Welding 1072
59.2.3 High-Energy Beam Welding 1073
59.3 Basic Equipment and Control Parameters 1074
59.3.1 Arc Welding Equipment 1074
59.3.2 Resistance Welding Equipment 1075
59.4 Welding Process Sensing, Monitoring, and Control 1076
59.4.1 Sensors for Welding Systems 1076
59.4.2 Monitoring and Control of Welding 1078
59.5 Robotic Welding 1078
59.5.1 Composition of Welding Robotic System 1078
59.5.2 Programming of Welding Robots 1080
59.6 Future Trends in Automated Welding 1081
59.7 Further Reading 1082
References 1082
60 Automation in Food Processing 1084
60.1 The Food Industry 1085
60.2 Generic Considerations in Automation for Food Processing 1086
60.2.1 Automation and Safety 1086
60.2.2 Easy-to-Clean Hygienic Design 1086
60.2.3 Fast Operational Speed (High-Speed Pick and Place) 1087
60.2.4 Joints and Seals 1088
60.2.5 Actuators 1088
60.2.6 Orientation and Positioning 1088
60.2.7 Conveyors 1089
60.3 Packaging, Palletizing, and Mixed Pallet Automation 1089
60.3.1 Check Weight 1090
60.3.2 Inspection Systems 1090
60.3.3 Labeling 1091
60.3.4 Palletizing 1091
60.4 Raw Product Handling and Assembly 1092
60.4.1 Handling Products That Bruise 1093
60.4.2 Handling Fish and Meat 1094
60.4.3 Handling Moist Food Products 1095
60.4.4 Handling Sticky Products 1096
60.5 Decorative Product Finishing 1097
60.6 Assembly of Food Products - Making a Sandwich 1098
60.7 Discrete Event Simulation Example 1099
60.8 Totally Integrated Automation 1100
60.9 Conclusions 1101
60.10 Further Reading 1101
References 1101
G Infrastructure and Service Automation 1103
61 Construction Automation 1105
61.1 Motivations for Automating Construction Operations 1106
61.2 Background 1107
61.3 Horizontal Construction Automation 1108
61.4 Building Construction Automation 1110
61.5 Techniques and Guidelines for Construction Management Automation 1112
61.5.1 Planning and Scheduling Automation 1112
61.5.2 Construction Cost Management Automation 1113
61.5.3 Construction Performance Management Automation 1113
61.5.4 Design-Construction Coordination Automation 1115
61.6 Application Examples 1115
61.6.1 Grade Control System for Dozers 1115
61.6.2 Planning and Scheduling Automation 1116
61.6.3 Construction Cost Estimating Automation 1116
61.6.4 Construction Progress Monitoring Automation 1117
61.7 Conclusions and Challenges 1118
References 1118
62 The Smart Building 1121
62.1 Background 1121
62.1.1 What is a Smart Building? 1123
62.1.2 Historical Perspectives 1124
62.2 Application Examples 1125
62.2.1 Control without Feedback 1125
62.2.2 Feedback Control 1125
62.2.3 Energy Management Control Strategies 1127
62.2.4 Performance Monitoring and Alarms 1129
62.3 Emerging Trends 1130
62.4 Open Challenges 1132
62.5 Conclusions 1134
References 1134
63 Automation in Agriculture 1136
63.1 Field Machinery 1137
63.1.1 Automatic Guidance of Agricultural Vehicles 1138
63.1.2 Autonomous Agricultural Vehicles and Robotic Field Operations 1140
63.1.3 Future Directions and Prospects 1142
63.2 Irrigation Systems 1142
63.2.1 Types of Irrigation Systems 1143
63.2.2 Automation in Irrigation Systems 1144
63.3 Greenhouse Automation 1145
63.3.1 Climate Control 1145
63.3.2 Seedling Production 1147
63.3.3 Automatic Sprayers 1150
63.3.4 Fruit Harvesting Robots 1150
63.4 Animal Automation Systems 1152
63.4.1 Dairy 1152
63.4.2 Aquaculture 1155
63.4.3 Poultry 1156
63.4.4 Sheep and Swine 1156
63.5 Fruit Production Operations 1157
63.5.1 Orchard Automation Systems 1157
63.5.2 Automation of Fruit Grading and Sorting 1159
63.6 Summary 1162
References 1163
64 Control System for Automated Feed Plant 1170
64.1 Objectives 1170
64.2 Problem Description 1171
64.3 Special Issues To Be Solved 1172
64.4 Choosing the Control System 1172
64.5 Calibrating the Weighing Machines 1173
64.6 Management of the Extraction Process 1174
64.7 Software Design: Theory and Application 1174
64.7.1 Project Structure and Important Issues 1175
64.8 Communication 1177
64.9 Graphical User Interface on the PLC 1177
64.10 Automatic Feeding of Chicken 1178
64.11 Environment Control in the Chicken Plant 1178
64.12 Results and Conclusions 1179
64.13 Further Reading 1179
References 1179
65 Securing Electrical Power System Operation 1180
65.1 Power Balancing 1182
65.1.1 The Problem 1182
65.1.2 Who Performs Power Balancing? 1182
65.1.3 Means of Balancing 1183
65.1.4 Power Balancing Mechanisms Within the Control Area 1184
65.1.5 System Frequency 1186
65.1.6 Primary Frequency Control 1186
65.1.7 Secondary Frequency and Power Control 1189
65.1.8 Tertiary Reserve 1191
65.1.9 Quick-Start Reserve 1191
65.1.10 Standby Reserve 1191
65.1.11 Planning Reserves 1191
65.1.12 Performance Criteria 1192
65.2 Ancillary Services Planning 1194
65.2.1 Stochastic Model of Area Control Error 1195
65.2.2 Minimal Needs of AS 1196
65.2.3 AS Bids from Generation Companies 1197
65.2.4 Procurement of Ancillary Services 1198
65.2.5 Availability of Self-Regulation Power 1198
65.2.6 Monte Carlo Simulation of Power Balancing 1198
65.2.7 Control Performance Evaluation 1200
65.2.8 Case Studies 1200
65.2.9 Related Topics 1202
References 1203
66 Vehicle and Road Automation 1205
66.1 Background 1205
66.1.1 USA - Intelligent Transportation Systems (ITS) Background 1205
66.1.2 European Union - Telematics Initiatives 1209
66.1.3 Japan - ITS Initiatives 1210
66.2 Integrated Vehicle-Based Safety Systems (IVBSS) 1211
66.2.1 IVBSS Systems Architecture 1211
66.2.2 Forward Collision Warning (FCW) System 1213
66.2.3 Road Departure Crash Warning (RDCW) System 1214
66.2.4 Human Factors 1214
66.3 Vehicle Infrastructure Integration (VII) 1216
66.3.1 VII Benefits 1216
66.3.2 VII Risks 1217
66.4 Conclusion and Emerging Trends 1217
66.5 Further Reading 1218
References 1220
67 Air Transportation System Automation 1221
67.1 Current NAS CNS/ATM Systems Infrastructure 1223
67.1.1 Air/Ground Communications Systems and Functions 1224
67.1.2 Navigation and Guidance Systems 1226
67.1.3 Modes of Navigation 1229
67.1.4 ATC Surveillance Systems and Aircraft Tracking 1230
67.1.5 Aircraft Tracking 1232
67.1.6 Air Traffic Management Functions 1232
67.2 Functional Role of Automation in Aircraft{} for Flight Safety and Efficiency 1234
67.3 Functional Role of Automation in the Ground System for Flight Safety and Efficiency 1235
67.3.1 Minimum Safe Altitude Warning 1235
67.3.2 Conflict Alert 1235
67.3.3 User Request Evaluation Tool 1236
67.3.4 Traffic Management Advisor 1236
67.4 CNS/ATM Functional Limitations with Impact on Operational Performance Measures 1236
67.4.1 Current Separation Minima for Controlled IFR Aircraft 1237
67.4.2 Flight Safety Assessment Metrics 1239
67.4.3 Determination of Airport Capacity 1239
67.4.4 Aircraft Delays to Measure Operational Efficiency 1242
67.4.5 Measuring Controller Workload 1242
67.5 Future Air Transportation System Requirements and Functional Automation 1243
67.5.1 Automation Approach to Meet Future Air Transportation System Requirements 1244
67.5.2 Development of Automated Functional Capabilities 1244
67.6 Summary 1251
References 1252
68 Flight Deck Automation 1254
68.1 Background and Theory 1254
68.1.1 Historical Developments and Principles 1255
68.1.2 Modern Automation 1256
68.2 Application Examples 1256
68.2.1 Control Automation 1256
68.2.2 Warning and Alerting Systems 1260
68.2.3 Information Automation 1264
68.3 Guidelines for Automation Development 1265
68.3.1 Control Automation 1266
68.3.2 Warning and Alerting Systems 1266
68.3.3 Information Automation 1267
68.3.4 Human Factors Issues 1268
68.3.5 Software and System Safety 1272
68.3.6 System Integration 1272
68.3.7 Certification and Equipage 1273
68.4 Flight Deck Automation in the Next-Generation Air-Traffic System 1273
68.4.1 Network-centric Operations 1274
68.4.2 Future Air Vehicle Types 1274
68.4.3 Superdensity Operations 1275
68.4.4 Integration 1275
68.5 Conclusion 1275
68.6 Web Resources 1275
References 1276
69 Space and Exploration Automation 1279
69.1 Space Automation/Robotics Background 1280
69.2 Challenges of Space Automation 1281
69.2.1 Sensing and Perception for Manipulation and Mobility 1282
69.2.2 On-Orbit and In-Space Robotics 1284
69.2.3 Subsurface Robotics 1285
69.2.4 Automation 1286
69.3 Past and Present Space Robots and Applications 1286
69.4 Future Directions and Capability Needs 1288
69.5 Summary and Conclusion 1289
69.6 Further Reading 1289
References 1290
70 Cleaning Automation 1291
70.1 Background and Cleaning Automation Theory 1292
70.1.1 Floor Cleaning Robots 1293
70.1.2 Facade, Pool, Ventilation Duct, and Sewer Line Cleaning Robots 1293
70.2 Examples of Application 1294
70.2.1 Floor Cleaning Systems 1294
70.2.2 Roofs and Facades 1296
70.2.3 Ducts and Sewer Lines 1299
70.2.4 Swimming Pools 1299
70.3 Emerging Trends 1301
References 1301
71 Automating Information and Technology Services 1303
71.1 Preamble 1303
71.1.1 Evolution of the Information and Technology Services Industry 1304
71.1.2 The Opportunity for Automation 1304
71.2 Distinct Business Segments 1305
71.3 Automation Path in Each Business Segment 1307
71.3.1 Delivery of Data and Information 1307
71.3.2 Data Processing 1307
71.3.3 Business Process Outsourcing 1309
71.3.4 Analytics 1310
71.3.5 Printing and Display Solutions 1311
71.4 Information Technology Services 1312
71.4.1 Computer-Aided Software Engineering 1312
71.4.2 Independent Software Testing and Quality Assurance 1313
71.4.3 Package and Bespoke Software Implementation and Maintenance 1315
71.4.4 Network and Security Management 1316
71.4.5 Hosting and Infrastructure Management 1318
71.5 Impact Analysis 1319
71.6 Emerging Trends 1320
References 1320
72 Library Automation 1323
72.1 In the Beginning: Book Catalogs and Card Catalogs 1323
72.2 Development of the MARC Format and Online Bibliographic Utilities 1324
72.2.1 Integrated Library Systems 1325
72.2.2 Integrated Library Systems: The Second Generation 1327
72.2.3 The Nonroman World: Unicode Comes to Libraries 1328
72.3 OpenURL Linking and the Rise of Link Resolvers 1328
72.3.1 Metasearching 1329
72.3.2 The Digital Revolution and Digital Repositories 1331
72.3.3 Electronic Resource Management 1331
72.3.4 From OPAC to Next-Generation Discovery to Delivery 1332
72.4 Future Challenges 1334
72.5 Further Reading 1334
72.5.1 General Overview 1334
72.5.2 Specific Topics 1334
References 1335
73 Automating Serious Games 1337
73.1 Theoretical Foundation and Developments: Learning Through Gaming 1337
73.2 Application Examples 1341
73.2.1 MERP 1341
73.2.2 L'Oreal e-Strat 1344
73.3 Guidelines and Techniques for Serious Games 1344
73.3.1 The Serious Game Solution for e-Learning Characteristics 1344
73.3.2 The Virtual World for Learning by Doing Characteristics 1344
73.3.3 Supporting the Learning by Doing Characteristics 1346
73.4 Emerging Trends, Open Challenges 1347
73.5 Additional Reading 1348
References 1348
74 Automation in Sports and Entertainment 1350
74.1 Robots in Entertainment, Leisure, and Hobby 1352
74.1.1 Definitions 1352
74.1.2 Categories 1352
74.1.3 Examples 1352
74.2 Market 1367
74.3 Summary and Forecast 1367
74.4 Further Reading 1368
References 1368
H Automation in Medical and Healthcare Systems 1369
75 Automatic Control in Systems Biology 1371
75.1 Basics 1371
75.1.1 Systems Biology 1372
75.1.2 Control Research in Systems Biology 1372
75.2 Biophysical Networks 1373
75.2.1 Timing and Rhythm: Circadian Rhythm Networks and Oscillatory Processes 1373
75.2.2 Apoptosis: Programmed Cell Death 1374
75.2.3 Signals in Diabetes: Insulin Signaling Pathway 1375
75.3 Network Models for Structural Classification 1376
75.3.1 Hierarchical Networks 1377
75.3.2 Boolean Networks, Petri Nets, and Associated Structures 1377
75.4 Dynamical Models 1378
75.4.1 Stochastic Systems 1379
75.4.2 Constraints and Optimality in Modeling Metabolism 1380
75.5 Network Identification 1382
75.5.1 Data-Driven Methods 1382
75.5.2 Linear Approximations 1383
75.5.3 Mechanistic Models, Identifiability and Experimental Design 1384
75.6 Quantitative Performance Metrics 1385
75.6.1 State-Based Sensitivity Metrics 1386
75.6.2 Phase-Based Sensitivity Metrics 1387
75.6.3 Global Versus Local Parameters 1389
75.7 Bio-inspired Control and Design 1389
75.8 Emerging Trends 1390
References 1390
76 Automation and Control in Biomedical Systems 1397
76.1 Background and Introduction 1397
76.1.1 Scope 1397
76.1.2 Data Quantity and Quality 1398
76.1.3 Preclinical Versus Clinical Study Data 1399
76.2 Theory and Tools 1400
76.2.1 Parameter Estimation 1400
76.2.2 Pharmacokinetics 1402
76.2.3 Modeling Physiology 1402
76.2.4 Biochemical Networks 1403
76.2.5 Model-Based Control and Optimization 1404
76.3 Techniques and Applications 1405
76.3.1 Type I Diabetes Modeling and Control 1405
76.3.2 Cancer Radio- and Chemotherapy 1408
76.4 Emerging Areas and Challenges 1409
76.4.1 in vitro Physiological Systems 1410
76.4.2 Translating in vitro to in vivo 1410
76.4.3 Model and Network Structure Identification 1411
76.5 Summary 1411
References 1411
77 Automation in Hospitals and Healthcare 1415
77.1 The Need for Automation in Healthcare 1416
77.2 The Role of Medical Informatics 1418
77.2.1 Information Management 1418
77.2.2 Knowledge Management 1419
77.2.3 Knowledge Representation 1420
77.2.4 Knowledge Generation 1421
77.2.5 Knowledge in Action 1423
77.3 Applications 1425
77.3.1 Patient Access 1425
77.3.2 Healthcare Billing 1425
77.3.3 Healthcare Administration 1426
77.3.4 Clinical Care 1427
77.3.5 Patient Connectivity 1429
77.3.6 Interoperability 1430
77.3.7 Enterprise Systems 1431
77.4 Conclusion 1432
References 1432
78 Medical Automation and Robotics 1433
78.1 Classification of Medical Robotics Systems 1434
78.1.1 Passive Medical Robotic Systems 1434
78.1.2 Semiactive Medical Robotic Systems 1435
78.1.3 Active Medical Robotic Systems 1435
78.1.4 Remote Manipulators 1436
78.1.5 Navigators 1437
78.2 Kinematic Structure of Medical Robots 1439
78.3 Fundamental Requirements from a Medical Robot 1440
78.4 Main Advantages of Medical Robotic Systems 1440
78.5 Emerging Trends in Medical Robotics Systems 1441
References 1442
79 Rotary Heart Assist Devices 1444
79.1 The Cardiovascular Model 1445
79.2 Cardiovascular Model Validation 1449
79.3 LVAD Pump Model 1450
79.4 Combined Cardiovascular and LVAD Model 1451
79.5 Challenges in the Development of a Feedback Controller and Suction Detection Algorithm 1453
79.6 Conclusion 1455
References 1455
80 Medical Informatics 1458
80.1 Background 1458
80.2 Diagnostic-Therapeutic Cycle 1459
80.3 Communication and Integration 1460
80.4 Database and Data Warehouse 1461
80.5 Medical Support Systems 1462
80.5.1 Solitary Imaging Information Systems 1462
80.5.2 Laboratory Information Systems 1462
80.5.3 Hospital Pharmacy Information System 1463
80.5.4 Nursing Information Systems 1464
80.6 Medical Knowledge and Decision Support System 1464
80.6.1 Evidence-Based Medicine 1464
80.6.2 Data Mining Techniques 1464
80.7 Developing a Healthcare Information System 1465
80.8 Emerging Issues 1466
80.8.1 Quality of Care 1466
80.8.2 Security 1466
80.8.3 Public-Use Databases for Medical Research 1466
References 1467
81 Nanoelectronic-Based Detection for Biology and Medicine 1468
81.1 Historical Background 1468
81.2 Interfacing Biological Molecules 1469
81.2.1 Guidelines for Preparing Silicon Chips for Biofunctionalization 1471
81.2.2 Verification of Surface Densities of Functional Layers 1472
81.3 Electrical Characterization of DNA Molecules on Surfaces 1473
81.3.1 Indirect Measurements of Charge Transfer Through DNA 1473
81.3.2 Direct Measurement of DNA Conduction and DNA Conductivity Models 1473
81.4 Nanopore Sensors for Characterization of Single DNA Molecules 1476
81.4.1 Biological Nanopores 1476
81.4.2 Solid-State Nanopore 1478
81.4.3 The Promise of Low-Cost DNA Sequencing 1481
81.5 Conclusions and Outlook 1482
References 1482
82 Computer and Robot-Assisted Medical Intervention 1485
82.1 Clinical Context and Objectives 1485
82.2 Computer-Assisted Medical Intervention 1486
82.2.1 CAMI Major Components 1486
82.2.2 Added Value of a Robot 1487
82.3 Main Periods of Medical Robot Development 1488
82.3.1 The Era of Automation (1985-1995) 1488
82.3.2 The Era of Interactive Devices (1990-2005) 1489
82.3.3 The Era of Small and Light Dedicated Devices (2000 to Present Day) 1489
82.4 Evolution of Control Schemes 1492
82.5 The Cyberknife System: A Case Study 1493
82.6 Specific Issues in Medical Robotics 1495
82.7 Systems Used in Clinical Practice 1496
82.8 Conclusions and Emerging Trends 1497
82.9 Medical Glossary 1497
References 1498
I Home, Office, and Enterprise Automation 1501
83 Automation in Home Appliances 1503
83.1 Background and Theory 1503
83.1.1 History 1503
83.1.2 Enabling Technologies 1504
83.2 Application Examples, Guidelines, and Techniques 1506
83.2.1 Refrigeration 1506
83.2.2 Cooking 1508
83.2.3 Cleaning 1509
83.2.4 General Appliance Automation 1509
83.2.5 Household Energy Management 1512
83.3 Emerging Trends and Open Challenges 1515
83.3.1 Trends 1515
83.3.2 Challenges 1516
83.4 Further Reading 1517
References 1517
84 Service Robots and Automation for the Disabled/Limited 1518
84.1 Motivation and Required Functionalities 1519
84.2 State of the Art 1519
84.2.1 Mobility Aids 1520
84.2.2 Guidance Robots 1522
84.2.3 Manipulation Aids 1523
84.2.4 Orthoses and Exoskeletons 1524
84.2.5 Prostheses 1525
84.3 Application Example: the Robotic Home Assistant Care-O-bot 1526
84.3.1 History of Care-O-bot Development 1526
84.3.2 Key Technologies 1527
84.3.3 Applications 1529
84.4 Application Example: the Bionic Robotic Arm ISELLA 1529
84.4.1 Service Robot Arms and Drive Technology 1529
84.4.2 The DOHELIX Muscle 1531
84.4.3 The ISELLA Robot Arm 1531
84.5 Future Challenges 1532
References 1532
85 Automation in Education/Learning Systems 1536
85.1 Technology Aspects of Education/Learning Systems 1536
85.1.1 Overview of Instructional Design (ID) 1536
85.1.2 Development History and Present Conditions of e-Learning 1540
85.2 Examples 1544
85.2.1 Educational Programs for Cyber Manufacturing in Industrial Engineering and Information Management 1544
85.2.2 The Case of an Educational Program for Manufacturing Managers Using IT Jigs 1551
85.3 Conclusions and Emerging Trends 1556
References 1557
86 Enterprise Integration and Interoperability 1561
86.1 Definitions and Background 1562
86.1.1 Enterprise Integration 1562
86.1.2 Systems Interoperability 1563
86.1.3 Background 1563
86.2 Integration and Interoperability Frameworks 1564
86.2.1 Technical Interoperability 1564
86.2.2 Semantic Interoperability 1565
86.2.3 Organizational Interoperability 1565
86.3 Standards and Technology for Interoperability 1565
86.4 Applications and Future Trends 1567
86.5 Conclusion 1569
References 1569
87 Decision Support Systems 1571
87.1 Characteristics of DSS 1572
87.1.1 Management Information Needs 1572
87.1.2 Communications-Driven and Group DSS 1574
87.1.3 Data-Driven DSS 1574
87.1.4 Document-Driven DSS 1574
87.1.5 Knowledge-Driven DSS 1575
87.1.6 Model-Driven DSS 1575
87.1.7 Secondary Dimensions 1575
87.2 Building Decision Support Systems 1576
87.3 DSS Architecture 1578
87.4 Conclusions 1579
87.5 Further Reading 1579
References 1580
88 Collaborative e-Work, e-Business, and e-Service 1581
88.1 Background and Definitions 1581
88.2 Theoretical Foundations of e-Work and Collaborative Control Theory (CCT) 1584
88.2.1 e-Work Theory and Models 1585
88.2.2 Agents 1585
88.2.3 Protocols 1585
88.2.4 Workflow 1586
88.2.5 Integration 1586
88.2.6 Computer-Integrated Manufacturing 1587
88.2.7 Human-Computer Interaction 1587
88.2.8 Extended Enterprises 1588
88.2.9 Decision Models 1589
88.2.10 Distributed Control Systems 1589
88.2.11 Collaborative Problem-Solving 1591
88.2.12 Middleware 1592
88.2.13 Distributed Knowledge Systems 1592
88.2.14 Grid Computing 1592
88.2.15 Knowledge-Based Systems 1593
88.3 Design Principles for Collaborative e-Work, e-Business, and e-Service 1594
88.3.1 e-Work Design Principles 1594
88.3.2 Emerging Collaborative e-Work, e-Business, and e-Service Design Principles 1601
88.4 Conclusions and Challenges 1603
88.5 Further Reading 1604
References 1605
89 e-Commerce 1609
89.1 Background 1610
89.2 Theory 1612
89.2.1 Definitions of e-Commerce 1612
89.2.2 Frameworks for e-Commerce 1613
89.2.3 e-Commerce Success Parameters 1615
89.3 e-Commerce Models and Applications 1617
89.3.1 B2C e-Commerce 1617
89.3.2 B2B e-Commerce 1620
89.3.3 C2C e-Commerce 1622
89.4 Emerging Trends in e-Commerce 1623
89.4.1 Mobile Commerce 1623
89.4.2 Telemedicine: e-Health 1624
89.4.3 Fee-Based Information Delivery 1624
89.5 Challenges and Emerging Issues in e-Commerce 1624
89.5.1 Trust and e-Commerce 1624
89.5.2 Legal Issues in e-Commerce 1625
89.5.3 Outlook 1625
References 1626
90 Business Process Automation 1629
90.1 Definitions and Background 1630
90.1.1 Anatomy of an ERP System 1632
90.1.2 ERP Implications 1634
90.1.3 ERP Evolution 1636
90.2 Enterprise Systems Application Frameworks 1638
90.2.1 Customer Relationship Management 1638
90.2.2 Supply Chain Management 1639
90.2.3 e-Business 1640
90.3 Emerging Standards and Technology 1641
90.3.1 Services Concept 1641
90.3.2 Competitive Landscape 1641
90.4 Future Trends 1642
90.5 Conclusion 1643
References 1643
91 Automation in Financial Services 1645
91.1 Overview of the Financial Service Industry 1646
91.2 Community Banks and Credit Unions 1648
91.2.1 How a Retail Bank/Credit Union Works 1648
91.3 Role of Automation in Community Banks and Credit Unions 1651
91.3.1 Definition of Success 1651
91.3.2 Core Processing and the Role of Sourcing 1652
91.3.3 Internet Banking and the Role of Adoption 1654
91.4 Emerging Trends and Issues 1657
91.4.1 Role of Integration 1657
91.4.2 Regulation 1657
91.4.3 Shift From Paper to Electronic Payments 1657
91.4.4 Emerging Technologies - Web 2.0 1658
91.5 Conclusions 1658
References 1658
92 e-Government 1660
92.1 Automating Administrative Processes 1660
92.2 The Evolution of e-Government 1661
92.3 Proceeding from Strategy to Roll-Out: Four Dimensions of Action 1664
92.3.1 Strategy 1665
92.3.2 Processes and Organization 1668
92.3.3 Technology 1668
92.3.4 Project and Change Management 1669
92.4 Future Challenges in e-Government Automation 1670
92.4.1 Political Challenges 1671
92.4.2 Engineering Challenges 1671
References 1672
93 Collaborative Analytics for Astrophysics Explorations 1675
93.1 Scope 1675
93.2 Science Background 1676
93.3 Previous Work 1678
93.4 Sunfall Design Process 1679
93.5 Sunfall Architecture and Components 1680
93.5.1 Search 1680
93.5.2 Workflow Status Monitor 1685
93.5.3 Data Forklift 1685
93.5.4 Supernova Warehouse 1687
93.6 Conclusions 1696
93.6.1 Future Research Directions 1698
References 1698
J Appendix 1701
94 Automation Statistics 1703
94.1 Automation Statistics 1704
94.1.1 Financial and e-Commerce Automation 1704
94.1.2 Industrial Automation 1707
94.1.3 Automation in Service and the Healthcare Industry 1710
94.1.4 Service Automation 1712
94.2 Automation Associations 1715
94.3 Automation Laboratories Around the World 1723
94.4 Automation Journals from Around the World 1726
94.4.1 Automation-Related Journals 1728
Acknowledgements 1732
About the Authors 1736
Detailed Contents 1764
Subject Index 1806

Erscheint lt. Verlag 16.7.2009
Reihe/Serie Springer Handbooks
Springer Handbooks
Zusatzinfo LXXVI, 1812 p. 1005 illus. in color.
Verlagsort Berlin
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Applications of Automation • Automation • automation design • Automation Handbook • Automation in Medicine and Healthcare • Automation Integration • Automation Management • Automation Theory • E-Business • Enterprise Automation • home automation • Impacts of Automation • Industr
ISBN-10 3-540-78831-X / 354078831X
ISBN-13 978-3-540-78831-7 / 9783540788317
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 112,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
18,68