Turbulence Nature and the Inverse Problem (eBook)
XVI, 197 Seiten
Springer Netherland (Verlag)
978-90-481-2251-6 (ISBN)
Hydrodynamic equations well describe averaged parameters of turbulent steady flows, at least in pipes where boundary conditions can be estimated. The equations might outline the parameters fluctuations as well, if entry conditions at current boundaries were known. This raises, in addition, the more comprehensive problem of the primary perturbation nature, noted by H.A. Lorentz, which still remains unsolved. Generally, any flow steadiness should be supported by pressure waves emitted by some external source, e.g. a piston or a receiver. The wave plane front in channels quickly takes convex configuration owing to Rayleigh's law of diffraction divergence. The Schlieren technique and pressure wave registration were employed to investigate the wave interaction with boundary layer, while reflecting from the channel wall. The reflection induces boundary-layer local separation and following pressure rapid increase within the perturbation zone. It propagates as an acoustic wave packet of spherical shape, bearing oscillations of hydrodynamic parameters. Superposition of such packets forms a spatio-temporal field of oscillations fading as 1/r. This implies a mechanism of the turbulence. Vorticity existing in the boundary layer does not penetrate in itself into potential main stream. But the wave leaving the boundary layer carries away some part of fluid along with frozen-in vorticity. The vorticity eddies form another field of oscillations fading as 1/r2. This implies a second mechanism of turbulence. Thereupon the oscillation spatio-temporal field and its randomization development are easy computed. Also, normal burning transition into detonation is explained, and the turbulence inverse problem is set and solved as applied to plasma channels created by laser Besselian beams.
Hydrodynamic equations well describe averaged parameters of turbulent steady flows, at least in pipes where boundary conditions can be estimated. The equations might outline the parameters fluctuations as well, if entry conditions at current boundaries were known. This raises, in addition, the more comprehensive problem of the primary perturbation nature, noted by H.A. Lorentz, which still remains unsolved. Generally, any flow steadiness should be supported by pressure waves emitted by some external source, e.g. a piston or a receiver. The wave plane front in channels quickly takes convex configuration owing to Rayleigh's law of diffraction divergence. The Schlieren technique and pressure wave registration were employed to investigate the wave interaction with boundary layer, while reflecting from the channel wall. The reflection induces boundary-layer local separation and following pressure rapid increase within the perturbation zone. It propagates as an acoustic wave packet of spherical shape, bearing oscillations of hydrodynamic parameters. Superposition of such packets forms a spatio-temporal field of oscillations fading as 1/r. This implies a mechanism of the turbulence. Vorticity existing in the boundary layer does not penetrate in itself into potential main stream. But the wave leaving the boundary layer carries away some part of fluid along with frozen-in vorticity. The vorticity eddies form another field of oscillations fading as 1/r2. This implies a second mechanism of turbulence. Thereupon the oscillation spatio-temporal field and its randomization development are easy computed. Also, normal burning transition into detonation is explained, and the turbulence inverse problem is set and solved as applied to plasma channels created by laser Besselian beams.
Turbulence Nature and the Inverse Problem 2
L.N. Pyatnitsky 4
With 75 Figures 4
Preface 6
Acknowledgments 9
Symbols 10
Contents 13
1 The turbulence problem 15
2 Fluid motion 30
3 Distribution of parameters in viscous flow 41
4 Perturbations in viscous flow 55
5 Perturbation in channels 66
6 Spatio-temporal field of perturbations in channels 83
7 Evolution of velocity oscillation field 95
8 Experimental substantiation of turbulence wave model 113
9 Transition from normal combustion to detonation 135
10 An inverse problem of turbulence 165
Conclusion 191
References 194
Index 201
Erscheint lt. Verlag | 22.3.2009 |
---|---|
Reihe/Serie | Fluid Mechanics and Its Applications | Fluid Mechanics and Its Applications |
Zusatzinfo | XVI, 197 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Original-Titel | The Navier-Stokes Equation and Turbulent Pulsations |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Mathematik / Informatik ► Informatik ► Web / Internet | |
Naturwissenschaften ► Physik / Astronomie ► Hochenergiephysik / Teilchenphysik | |
Naturwissenschaften ► Physik / Astronomie ► Mechanik | |
Naturwissenschaften ► Physik / Astronomie ► Optik | |
Naturwissenschaften ► Physik / Astronomie ► Quantenphysik | |
Technik | |
Schlagworte | boundary layer • Experiment • hydrodynamic equations • Laser • Potential • stochastization • tar • Turbulent flow • turbulent fluctuations |
ISBN-10 | 90-481-2251-1 / 9048122511 |
ISBN-13 | 978-90-481-2251-6 / 9789048122516 |
Haben Sie eine Frage zum Produkt? |
Größe: 10,7 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich