Singular Limits in Thermodynamics of Viscous Fluids (eBook)

eBook Download: PDF
2009 | 2009
XXXVI, 382 Seiten
Springer Basel (Verlag)
978-3-7643-8843-0 (ISBN)

Lese- und Medienproben

Singular Limits in Thermodynamics of Viscous Fluids - Eduard Feireisl, Antonín Novotný
Systemvoraussetzungen
139,09 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Many interesting problems in mathematical fluid dynamics involve the behavior of solutions of nonlinear systems of partial differential equations as certain parameters vanish or become infinite. Frequently the limiting solution, provided the limit exists, satisfies a qualitatively different system of differential equations. This book is designed as an introduction to the problems involving singular limits based on the concept of weak or variational solutions. The primitive system consists of a complete system of partial differential equations describing the time evolution of the three basic state variables: the density, the velocity, and the absolute temperature associated to a fluid, which is supposed to be compressible, viscous, and heat conducting. It can be represented by the Navier-Stokes-Fourier-system that combines Newton's rheological law for the viscous stress and Fourier's law of heat conduction for the internal energy flux.

As a summary, this book studies singular limits of weak solutions to the system governing the flow of thermally conducting compressible viscous fluids.

Contents 6
Preface 12
Notation, Definitions, and Function Spaces 17
0.1 Notation 17
0.2 Differential operators 19
0.3 Function spaces 20
0.4 Sobolev spaces 25
0.5 Fourier transform 30
0.6 Weak convergence of integrable functions 33
0.7 Non-negative Borel measures 34
0.8 Parametrized (Young) measures 35
Fluid Flow Modeling 37
1.1 Fluids in continuum mechanics 38
1.2 Balance laws 40
1.3 Field equations 44
1.4 Constitutive relations 49
Weak Solutions, A Priori Estimates 54
2.1 Weak formulation 56
2.2 A priori estimates 60
Existence Theory 77
3.1 Hypotheses 78
3.2 Structural properties of constitutive functions 81
3.3 Main existence result 84
3.4 Solvability of the approximate system 87
3.5 Faedo-Galerkin limit 103
3.6 Artificial diffusion limit 119
3.7 Vanishing artificial pressure 138
3.8 Regularity properties of the weak solutions 156
Asymptotic Analysis – An Introduction 161
4.1 Scaling and scaled equations 163
4.2 Low Mach number limits 165
4.3 Strongly stratified flows 167
4.4 Acoustic waves 169
4.5 Acoustic analogies 173
4.6 Initial data 175
4.7 A general approach to singular limits for the full Navier- Stokes- Fourier system 176
Singular Limits – Low Stratification 180
5.1 Hypotheses and global existence for the primitive system 183
5.2 Dissipation equation, uniform estimates 186
5.3 Convergence 193
5.4 Convergence of the convective term 202
5.5 Conclusion – main result 216
Stratified Fluids 227
6.1 Motivation 227
6.2 Primitive system 228
6.3 Asymptotic limit 233
6.4 Uniform estimates 238
6.5 Convergence towards the target system 246
6.6 Analysis of acoustic waves 252
6.7 Asymptotic limit in entropy balance 260
Interaction of Acoustic Waves with Boundary 263
7.1 Problem formulation 265
7.2 Main result 268
7.3 Uniform estimates 271
7.4 Analysis of acoustic waves 273
7.5 Strong convergence of the velocity field 285
Problems on Large Domains 293
8.1 Primitive system 293
8.2 Uniform estimates 296
8.3 Acoustic equation 300
8.4 Regularization and extension to 303
8.5 Dispersive estimates and time decay of the acoustic waves 309
8.6 Conclusion – main result 314
Acoustic Analogies 316
9.1 Asymptotic analysis and the limit system 317
9.2 Acoustic equation revisited 318
9.3 Two-scale convergence 322
9.4 Lighthill’s acoustic analogy in the low Mach number regime 327
9.5 Concluding remarks 331
Appendix 333
10.1 Mollifiers 333
10.2 Basic properties of some elliptic operators 334
10.3 Normal traces 341
10.4 Singular and weakly singular operators 344
10.5 The inverse of the div-operator ( Bogovskii’s formula) 345
10.6 Helmholtz decomposition 353
10.7 Function spaces of hydrodynamics 355
10.8 Poincar ´ e type inequalities 357
10.9 Korn type inequalities 359
10.10 Estimating 363
u by means of 363
and curlxu 363
10.11 Weak convergence and monotone functions 364
10.12 Weak convergence and convex functions 368
10.13 Div-Curl lemma 371
10.14 Maximal regularity for parabolic equations 373
10.15 Quasilinear parabolic equations 375
10.16 Basic properties of the Riesz transform and related operators 377
10.17 Commutators involving Riesz operators 380
10.18 Renormalized solutions to the equation of continuity 382
Bibliographical Remarks 389
11.1 Fluid flow modeling 389
11.2 Mathematical theory of weak solutions 390
11.3 Existence theory 391
11.4 Analysis of singular limits 391
11.5 Propagation of acoustic waves 392
Bibliography 393
Index 406

Erscheint lt. Verlag 28.3.2009
Reihe/Serie Advances in Mathematical Fluid Mechanics
Advances in Mathematical Fluid Mechanics
Zusatzinfo XXXVI, 382 p.
Verlagsort Basel
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik
Naturwissenschaften Physik / Astronomie
Technik
Schlagworte Dissipation • Fluid Dynamics • fluid mechanics • Magnetohydrodynamics • Navier-Stokes-Fourier • Nonlinear Systems • partial differential equation • Partial differential equations • Rhe • Single Limits • thermodynamics • viscous fluids
ISBN-10 3-7643-8843-9 / 3764388439
ISBN-13 978-3-7643-8843-0 / 9783764388430
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ein Übungsbuch für Fachhochschulen

von Michael Knorrenschild

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
16,99
Basiswissen zur Technik der deutschen Lebensversicherung

von Jens Kahlenberg

eBook Download (2024)
Springer Fachmedien Wiesbaden (Verlag)
16,99
Von Logik und Mengenlehre bis Zahlen, Algebra, Graphen und …

von Bernd Baumgarten

eBook Download (2024)
De Gruyter (Verlag)
74,95