Geometric Integration Theory -  Steven G. Krantz,  Harold R. Parks

Geometric Integration Theory (eBook)

eBook Download: PDF
2008 | 1. Auflage
XVI, 339 Seiten
Birkhauser Boston (Verlag)
978-0-8176-4679-0 (ISBN)
Systemvoraussetzungen
55,92 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This textbook introduces geometric measure theory through the notion of currents. Currents, continuous linear functionals on spaces of differential forms, are a natural language in which to formulate types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis. The text provides considerable background for the student and discusses techniques that are applicable to complex geometry, partial differential equations, harmonic analysis, differential geometry, and many other parts of mathematics. Topics include the deformation theorem, the area and coareas formulas, the compactness theorem, the slicing theorem and applications to minimal surfaces. Motivating key ideas with examples and figures, Geometric Integration Theory is a comprehensive introduction ideal for both use in the classroom and for self-study. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for both graduate students and researchers.


Geometric measure theory has roots going back to ancient Greek mathematics, for considerations of the isoperimetric problem (to ?nd the planar domain of given perimeter having greatest area) led naturally to questions about spatial regions and boundaries. In more modern times, the Plateau problem is considered to be the wellspring of questions in geometric measure theory. Named in honor of the nineteenth century Belgian physicist Joseph Plateau, who studied surface tension phenomena in general, andsoap?lmsandsoapbubblesinparticular,thequestion(initsoriginalformulation) was to show that a ?xed, simple, closed curve in three-space will bound a surface of the type of a disk and having minimal area. Further, one wishes to study uniqueness for this minimal surface, and also to determine its other properties. Jesse Douglas solved the original Plateau problem by considering the minimal surfacetobeaharmonicmapping(whichoneseesbystudyingtheDirichletintegral). For this work he was awarded the Fields Medal in 1936. Unfortunately, Douglas's methods do not adapt well to higher dimensions, so it is desirable to ?nd other techniques with broader applicability. Enter the theory of currents. Currents are continuous linear functionals on spaces of differential forms.

Contents 7
Preface 10
1 Basics 14
2 Carathéodory’s Construction and Lower-Dimensional Measures 65
3 Invariant Measures and the Construction of Haar Measure 88
4 Covering Theorems and the Differentiation of Integrals 101
5 Analytical Tools: The Area Formula, the Coarea Formula, and Poincaré Inequalities 134
6 The Calculus of Differential Forms and Stokes’s Theorem 167
7 Introduction to Currents 181
8 Currents and the Calculus of Variations 233
9 Regularity of Mass-Minimizing Currents 263
Appendix 318
References 330
Index of Notation 335
Index 340

Erscheint lt. Verlag 15.12.2008
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Technik
Schlagworte Area formula • currents • differential forms • geometric measure theory • linear functionals • measure theory • Plateau's problem
ISBN-10 0-8176-4679-5 / 0817646795
ISBN-13 978-0-8176-4679-0 / 9780817646790
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich