Beyond the Quartic Equation -  R. Bruce King

Beyond the Quartic Equation (eBook)

eBook Download: PDF
2009 | 1. Auflage
VIII, 149 Seiten
Birkhauser Boston (Verlag)
978-0-8176-4849-7 (ISBN)
Systemvoraussetzungen
37,40 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The objective of this book is to present for the first time the complete algorithm for roots of the general quintic equation with enough background information to make the key ideas accessible to non-specialists and even to mathematically oriented readers who are not professional mathematicians. The book includes an initial introductory chapter on group theory and symmetry, Galois theory and Tschirnhausen transformations, and some elementary properties of elliptic function in order to make some of the key ideas more accessible to less sophisticated readers. The book also includes a discussion of the much simpler algorithms for roots of the general quadratic, cubic, and quartic equations before discussing the algorithm for the roots of the general quintic equation. A brief discussion of algorithms for roots of general equations of degrees higher than five is also included. 'If you want something truly unusual, try [this book] by R. Bruce King, which revives some fascinating, long-lost ideas relating elliptic functions to polynomial equations.' --New Scientist


One of the landmarks in the history of mathematics is the proof of the nonex- tence of algorithms based solely on radicals and elementary arithmetic operations (addition, subtraction, multiplication, and division) for solutions of general al- braic equations of degrees higher than four. This proof by the French mathema- cian Evariste Galois in the early nineteenth century used the then novel concept of the permutation symmetry of the roots of algebraic equations and led to the invention of group theory, an area of mathematics now nearly two centuries old that has had extensive applications in the physical sciences in recent decades. The radical-based algorithms for solutions of general algebraic equations of degrees 2 (quadratic equations), 3 (cubic equations), and 4 (quartic equations) have been well-known for a number of centuries. The quadratic equation algorithm uses a single square root, the cubic equation algorithm uses a square root inside a cube root, and the quartic equation algorithm combines the cubic and quadratic equation algorithms with no new features. The details of the formulas for these equations of degree d(d = 2,3,4) relate to the properties of the corresponding symmetric groups Sd which are isomorphic to the symmetries of the equilateral triangle for d = 3 and the regular tetrahedron for d - 4.

Group Theory and Symmetry.- The Symmetry of Equations: Galois Theory and Tschirnhausen Transformations.- Elliptic Functions.- Algebraic Equations Soluble by Radicals.- The Kiepert Algorithm for Roots of the General Quintic Equation.- The Methods of Hermite and Gordan for Solving the General Quintic Equation.- Beyond the Quintic Equation.

Erscheint lt. Verlag 16.1.2009
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Algebra
Technik
Schlagworte Algebra • elliptic function • Equation • Function • Galois Theory • general quintic equation • group theory • Mathematics • Quartic Equation • symmetry • Tschirnhausen transformations
ISBN-10 0-8176-4849-6 / 0817648496
ISBN-13 978-0-8176-4849-7 / 9780817648497
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 32,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich